PADX : Querying Large-scale Ad Hoc Data with XQuery

Mary Fernandez

Kathleen Fisher
AT&T Labs Research

{mff kfisher} @research.att.com

Name: Use

Representation

Web server logs (CLF)
Measure web workloads

Fixed-column ASCII records

AT&T provisioning data :
Monitor service activation

Variable-width ASCII records

Call detail: Fraud detection

Fixed-width binary records

AT&T bhilling data :
Monitor billing process

Various Cobol data formats

Netflow:
Monitor network performance

Data-dependent number of
fixed-width binary records

Newick: Immune
system response simulation

Fixed-width ASCII records
in tree-shaped hierarchy

Gene Ontology
Gene-gene correlations

Variable-width ASCII records
in DAG-shaped hierarchy

CPT codes Medical diagnoses

Floating point numbers

SnowMed Medical clinic notes

Keyword tags

k
Robert Gruber
Google

gruber@google.com

Figure 1. Selected ad hoc data sources.

Abstract

This paper describes our experience designing and impli&mgen
PADX, a system for querying large-scale ad hoc data sources with
XQuery. PADX is the synthesis and extension of two existing sys-
tems:PADS and Galax. WithPADX, an analyst writes a declarative
data description of the physical layout of her ad hoc datd,tha
pADS compiler produces customizable libraries for parsing tiad
and for viewing it as XML. The resulting library is linked vaitan
XQuery engine, permitting the analyst to view and query ldrec

data sources using XQuery.

1 Introduction

Although enormous amounts of data exist in “well-behaveai” f
mats such as XML and relational databases, massive amdsats a
exist in non-standard ad hocdata formats. Figure 1 gives some

Yitzhak Mandelbaum
Princeton University

yitzhakm@cs.princeton.edu

to roll their own tools, leading to scenarios such as theofalhg.

An analyst receives a new ad hoc data source containing poten
tially interesting information and a list of pressing quess about
that data. Could she please provide the answers to the ouoesti
as quickly as possible, preferably last week? The acconipagny
documentation is outdated and missing important inforomatso
she first has to experiment with the data to discover its sirac
Eventually, she understands the data well enough to hasiel-ao
parser, usually in C or BRL. Pressed for time, she interleaves code
to compute the answers to the supplied questions with theepar
As soon as the answers are computed, she gets a new data source
and a new set of questions to answer.

Through her heroic efforts, the data analyst answered thesne
sary questions, but the approach is deficient in many respébe
analyst’s hard-won understanding of the data ended up efeded
in a hand-written parser, where it is difficult for others tenkfit
from her understanding. The parser is likely to be brittléhwe-
spect to changes in the input sources. Consider, for examgle
tricky it is to figure out which $3's should be $4's in &RL parser
when a new column appears in the data. Errors in the dataadso p
a significant challenge in hand-coded parsers. If the dedéysin
thoroughly checks for errors, then the error checking conta-d
inates the parser, making it even more difficult to underbtidme
semantics of the data format. If she is not thorough, thesnewus
data can escape undetected, potentially (silently!) qtimg down-
stream processing. Finally, during the initial data exgiion and
in answering the specified questions, the analyst had toluoddo
computethe questions rather than being able to express the queries
in a declarative fashion. Of course, many of these pitfais be
avoided with careful design and sufficient time, but suchuties
are not available to the analyst. However, with the appeteriool
support, many aspects of this process can be greatly siatplifi

We have two toolspaDS [2, 8] and Galax [1, 7], each of which
addresses aspects of the analyst’s problem in isolatior.PAbhs
system allows analysts to describe ad hoc data sourcesralecla

sense of the range and pervasiveness of such data. Ad hoc dat@ively and then generates error-aware parsers and toolséor

comes in many forms: ASCII, binary, EBCDIC, and mixed for-
mats. It can be fixed-width, fixed-column, variable-width,eoen
tree-structured. It is often quite large, including som&adaurces
that generate over a gigabit per second [6]. It frequentigepwith
incomplete and/or out-of-date documentation, and thexabmost
always errors in the data. Sometimes these errors are theimos
teresting aspect of the datag, in log files where errors indicate
that something is going wrong in the associated system.

The lack of standard tools for processing ad hoc data fortaysts

*Work carried out while at AT&T Labs Research.

nipulating the sources, including statistical profilingl® Such
support allows the analyst to produce a robust, error-aparser
quickly. The Galax system supports declarative queryingMt
via XQuery. If Galax could be applied to ad hoc data, it would a
low the analyst first to explore the data and then to produseers
to her questions.

In this work, we strive to integrateabs and Galax to solve the an-
alyst’s data-management problems for the large ad hoc dataes
that we have seen in practice. One approach would be tofraye
produce a tool for converting ad hoc data to XML and then ap-

Ad Hoc Data Data Description
Description Compiler
Generated
Data Parsing &
XML Viewing
Ad Hoc Data Libraries
) —
Queries PADX Query
Query Results--a— Corral

Figure 2. Data analyst’s view ofPADX

ply Galax to the resulting document. (In faeabDs provides this
ability.) However, the typical factor of eight space blowinghis
conversion yields an unacceptable slowdown in performaGoa-
sequently, we chose to design and implenwxbx?!, a synthesis
and extension ofADS and Galax. Figure 2 depicenDx from the
analyst's perspective. The analyst providesaas description of
her ad hoc source, which is compiled into a library of compisie
for parsing her data and for viewing and querying it as XMLeTh
resulting libraries are linked together with thebs and Galax run-
time systems into oneADX query executable, called a “query cor-
ral2" At query time, the analyst provides her ad hoc data sources
and her query written in XQuery, armhDX produces the query’s
results.

Building PADX presented several problems. The first was semantic:
We had to decide how to view ad hoc data as XML and how to
express this view as a mapping from #redstype system to XML
Schema, the basis of XQuery's type system. A second problem
involved systems design and engineering. Buildmgx required
evolvingPADSand Galax in parallel, modifying the implementation
of Galax to support an abstract data model so that Galax cgsid
non-XML sources as XML, and augmentirgDs with the ability

to generate concrete instances of this data model. Ouri@usuto
these problems, which were necessary to build a workingesyst
are described in Sections 3 and 4. A third problem involvestale

of data and efficiency of queries, in particular, how to effittly
evaluate complex queries over large sources. Section Fildesc
how PADX currently handles large sources and the problems that
we face with respect to data scale and query performance.

We begin with a more detailed account of a scenario thatilitess
the data management tasks faced by AT&T data analysts and ho
PADX simplifies these tasks. We then crack operrthex architec-
ture, first describingpaAbs and Galax in isolation, and then describ-
ing our solutions to the problems described above. We cdeclu
with related work and a discussion of open problems.

1.1 Data-management scenario

In the telecommunications industry, the tepnovisioningrefers to
the process of converting an order for phone service intcathe
tual service. This process is complex, involving many iatéons
with other companies. To discover potential problems pioaly,
the Sirius project tracks AT&T’s provisioning process byrgml-
ing weekly summaries of the state of certain types of phongcse
orders. These summaries, which are stored in flat ASCII tkeg, fi

IPronounced “paddocks”, an enclosed area for exercisirgy rac
horses.

2The equestrian metaphor is intentional: Getting theseeryst
to work together is like corralling race horses!

can contain more than 2.2GB of data per week.

The summaries store the processing date and one recorddegr or
Each order record contains a header followed by a neste@segu
of events. The header has 13 pipe separated fields: the amter n
ber, AT&T's internal order number, the order version, foiffedent
telephone numbers associated with the order, the zip cdaling
identifier, the order type, a measure of the complexity ofdtder,

an unused field, and the source of the order data. Many of these
fields are optional, in which case nothing appears betwepitie
characters. The billing identifier may not be available &t tilme

of processing, in which case the system generates a unigaé-id
fier, and prefixes this value with the string “iid to indicate the
number was generated. The event sequence representsithesvar
states a service order goes through; it is represented ag-tnee
terminated, pipe separated list of state, timestamp pahsre are
over 400 distinct states that an order may go through duniagi{p
sioning. It may be apparent from this description that Esigis a
poor language for describing data formats!

The analyst’s first task is to write a parser for the Siriusdatmat.
Like many ad hoc data sources, Sirius data can contain uoge
or corrupted values, so the parser must handle errors tghiost
avoid corrupting the results of analyses. W#hDS, the analyst
writes a declarative data description of the physical layafther
data. The language also permits the analyst to describectexpe
semantic properties of her data so that deviations can bgefthg
as errors. The intent is to allow an analyst to capture mas
description all that she knows about a given data source.

Figure 4 gives theeADS description for the Sirius data format. In
PADS descriptions, types are declared before they are usedgeso th
type that describes the entire data sourceymary_t, appears at
the bottom of the description (Line 42). In the next sective,
use this example to give an overview of theDs language. Here,
we simply note that the data analyst writes this descriptand
the PADS compiler produces customizable C libraries and tools for
parsing, manipulating, and summarizing the data. The ffatttse-

ful software artifacts are generated frembsdescriptions provides
strong incentive for keeping the descriptions currentveithg them

to serve as living documentation.

Analysts working with ad hoc data often want to query thetada
Questions posed by the Sirius analyst include “Select aler

Wstarting within a certain time window,” “Count the numbermofiers

going through a particular state,” and “What is the average te-
quired to go from a particular event state to another pdeti@vent
state”. Such queries are useful for rapid information discg and
for vetting errors and anomalies in data before that dategerds to
a down-stream process or is loaded into a database.

With PADX, the analyst writes declarative XQuery expressions to
query her ad hoc data source. Because XQuery is designed-to ma
nipulate semi-structured data, its expressiveness nmtatiehoc
data sources well. As a Turing-complete language, XQugrpis
erful enough to express all the questions above. For exafjge
ure 5 contains an XQuery expression that produces all ottlats
started in October, 2004. In Section 4, we discuss in moraildet
why XQuery is an appropriate query language for ad hoc date. O
benefit is that XQuery queries may be statically typed, whielps
detect common errors at compile time. For example, stapimgy
would raise an error if the path expression in Figure 5 reféto

or desr instead of order s, or if the analyst erroneously compared
the timestamp value int st anp to a string.

0] 15/ Cct/2004: 18: 46: 51
9152| 9152| 1] 9735551212| 0| | 9085551212 07988| no_i i 152272| EDTF_6| 0] APRL1| DUQ| 10| 16/ Cct/ 2004: 10: 02: 10
9153 9153| 1] 0] 0] 0| 0] | 152268| LOC 6| 0] FRDWL| DUQ| LOC_CRTE| 1001476800| LOC_0S_10| 17/ Cct/ 2004: 08: 14: 21
Figure 3. Tiny example of Sirius provisioning data.

(:

Eali e

® N o

-k

-k

Precord Pstruct summary_header _t {
U
Puni xti ne tstanp;

¥

Pstruct no_ranp_t {
"no_ii";
Pui nt 64 id;

¥

Puni on dib_ramp_t {
Pi nt 64 ranp;
no_ranp_t genRanp;

. Pstruct order_header_t {
Pui nt 32 order_num
"I, Puint32 att_order_num
"|"; Puint32 ord_version;
"|'; Popt pn_t service_tn;
"|'; Popt pn_t billing_tn;
"|'; Popt pn_t nl p_service_tn;
"|'; Popt pn_t nlp_billing_tn;
"|'; Popt Pzip zi p_code;
"|"; dib_ranp_t ranp;
|, Pstring(:']':) order_type;
"|"; Puint32 order_details;
"'y Pstring(:'|':) unused;
|, Pstring(:']':) stream
¥
. Pstruct event_t {
Pstring(:"|":) state;
"|"; Punixtinme t st anp;

- b

. Parray event_seq_t {

event _t[] : Psep('|') && Ptern{Peor);

. Precord Pstruct order_t {

order _header _t order_header;
"|'; event_seq_t events;

- b

. Parray orders_t {

order _t[];

. Psource Pstruct summary_t{

summary_header _t summary_header;
orders_t orders;

Figure 4. PADS description for Sirius provisioning data.

Return orders started in October 2004 :)

$pads/ Psour ce/ orders/ el t[events/el t[1]

[tstanp/rep >= xs: dateTi me("2004- 10-01: 00:

00: 00")
and tstanp/rep < xs:dateTime("2004-11-01: 00: 00: 00")]]

Figure 5. Query applied to Sirius provisioning data.

2 UsingpPADS to Access Ad Hoc Data

In this section, we give a brief overview eADs, focusing on its
data description language and the portions of the libratigen-
erates that are relevant mDX. More information abouPADS is
available [2, 8].

2.1 PADS:. The language

A PADS specification describes the physical layout and semantic
properties of an ad hoc data source. The language proviggea t
based model: basic types specify atomic data such as isteger
strings, datesgtc, while structured types describe compound data
built from simpler pieces. TheaDslibrary provides a collection of
useful base types. Examples include 8-bit signed integ€rs1(8),
32-bit unsigned integers Rui nt 32), IP addresses Pi p), dates (
Pdat e), and strings (Pstri ng). By themselves, these base types
do not provide sufficient information for parsing becauseytbo

not indicate how the data is coddd:., in ASCII, EBCDIC, or bi-
nary. To resolve this ambiguitpADS uses theambientcoding. By
default, the ambient coding is ASCII, but programmers cast cu
tomize it as appropriate.

To describe more complex datsDsprovides a collection of struc-
tured types loosely based on C's type structure. In pagicehDS
hasPst r uct s, Puni ons, andPar r ays to describe record-like
structures, alternatives, and sequences, respectifelguns de-
scribe a fixed collection of literals, whilopt s provide convenient
syntax for optional data. A type may have an associated qatsli
that determines whether a parsed value is indeed a legad Yaiu
the type. For example, a predicate might require that oné GEl

a Pstruct is bigger than another or that the elements of a se-
guence are sorted. Programmers can specify such predisates
PADSexpressions and functions, written in a C-like syntax. lyna
PADSPt ypedef s allow programmers to define new types that add
further constraints to existing types.

PADS types can be parameterized by values. This mechanism re-
duces the number of base types and permits the format andrprop
ties of later portions of the data to depend upon earlieiquust For
example, the base typeui nt 16_FW: 3:) specifies an unsigned
two byte integer physically represented by exactly thregatters,
while the type Pstring(:'|':) (e.g, Line 29) describes a string
terminated by a vertical bar. Parameters can be used with@ona
types to specify the size of an array or the appropriate braha
union.

Pstructs describe ordered sequences of data with unrelated
types. In Figure 4, the type declaration for P&t r uct order _t
(Lines 35-38) contains an order headesr(der _header _t) fol-
lowed by the literal characteér| ' , followed by an event sequence

(event _seq_t). PADS supports character, string, and regular ex-
pression literals.

Puni ons describe alternatives in the data format. For example, the
di b_ramp_t type (Lines 9-12) indicates that theanp field in a
Sirius record can be either &ui nt _64 or a string "no_ii" fol-
lowed by a Pui nt _64. During parsing, the branches oPani on
are tried in order; the first branch that parses without asrtaken.

The order_header _t type (Lines 13—27) contains several anony-
mous uses of th®opt type. This type is syntactic sugar for a
stylized use of @uni on with two branches: the first with the in-
dicated type, and the second with the “void” type, which alsva
matches but never consumes any input.

PADS providesPar r ays to describe varying-length sequences of
data all with the same type. Thevent _seq_t type (Lines 32—
34) uses &Par r ay to characterize the sequence of events an or-
der goes through during processing. This declaration &td&that
each element in the sequence has typesnt _t . It also specifies
that the elements will be separated by vertical bars, andttiea
sequence will be terminated by an end-of-record marReo().

In general,PADS provides a rich collection of array-termination
conditions: reaching a maximum size, finding a terminatitegdl
(including end-of-record and end-of-source), or satigfya user-
supplied predicate over the already-parsed portion oPtre ay.

Finally, thePr ecor d (Line 35) andPsour ce (Line 42) annota-
tions deserve comment. The first indicates that the anmbtape
constitutes a record, while the second means that the typgtico
tutes the totality of a data source. The notion of a recoréesar
depending upon the data encoding. ASCII data typically nses
line characters to delimit records, binary sources tendwe fixed-
width records, while COBOL sources usually store the lergfth
each record before the actual databs supports each of these en-
codings of records and allows users to define their own engsdi

2.2 pADS: The generated library

From a description, theAaDps compiler generates a C library for
parsing and manipulating the associated data source. Fachm e
type in aPADS description, the compiler generates

e an in-memory representation,
e parsing and printing functions,

e a mask, which allows customization of generated functions,
and

e a parse descriptor, which describes syntactic and sememtic
rors detected during parsing.

To give a feeling for the library tha#ADS generates, Figure 6 in-
cludes a fragment of the generated library for the Siriexent _t
declaration.

The C declarations for the in-memory representation (Liné),1
the mask (Line 5-9), and the parse descriptor (Line 10-18hate
the structure of theeaDs type declaration. The mapping to C for
each is straightforwardPst r uct s map to C structs with appro-
priately mapped fieldsPuni ons map to tagged unions coded as
C structs with a tag field and an embedded uniégr, r ays map

to a C struct with a length field and a dynamically allocated se
guencePenuns map to C enumerationBppt s to tagged unions,
andPt ypedef s to C typedefs. Masks include auxiliary fields to
control behavior at the level of a structured type, and pdeserip-
tors include fields to record the state of the parse, the numbe
detected errors, the error code of the first detected ernat,tlze
location of that error.

The parsing functionse.g. event _t_read on Line 19, take a
mask as an argument and returns an in-memory represensaiibn
a parse descriptor.
constraints the parser should check and which portionsefrth

memory representation it should fill in. This control allotr®e
description-writer to specify all known constraints abth# data
without worrying about the run-time cost of verifying potiatly

expensive constraints for time-critical applications.

Appropriate error-handling is as important as processingyéree
data. The parse descriptor marks which portions of the data c
tain errors and specifies the detected errors. Depending tlngo
nature of the errors and the desired application, prograscen
take the appropriate action: halt the program, discardsprthe
data, or repair the errors. If the mask requests that a datakbie
verified and set, and if the parse descriptor indicates rar,dtren
the in-memory representation satisfies the semantic @ntsron
the data.

Because we generate a parsing function for each typeARnCe
description, we support multiple-entry point parsing, efhaccom-
modates larger-scale data. For a small file, a programmecaién
the parsing function for theAaDpstype that describes the entire file
(e.g. summary_t_read) to read the whole file with one call. For
larger-scale data, programmers can sequence calls to@dinsic-
tions that read manageable portions of the fdey, reading one
record at atime in aloop. The parsing code generateBdor ays
allows users to choose between reading the entire arraycatan
reading it one element at a time, again to support parsingpand
cessing very large data sources. We return to the use ofpiaulti
entry point parsing functions in Section 5.

3 Using XQuery and Galax

In this section, we give a brief overview of XML, XQuery, and
Galax, focusing on Galax’s data-model support for viewiog-n
XML data as XML. Given the subject of this workshop, we as-
sume the reader is already familiar with XML, XQuery, and XML
Schema.

XML [18] is a flexible format that can represent many classies o
data: structured documents with large fragments of macketbxt;
homogeneous records such as those in relational databaskset-
erogeneous records with varied structure and content suttfoae

in ad hoc data sources. XML makes it possible for application
to handle all these classes of data simultaneously and taage
such data in a standard format. This flexibility has made Xk t
“lingua franca” of data integration and exchange.

XQuery [20] is a typed, functional query language for XML ttha
supports user-defined functions and modules for strugudrge
queries. lIts type system is based on XML Schema [21]. XQuery
contains XPath 2.0 [19] as a proper sub-language, whichaostgop
navigation, selection, and extraction of fragments of XMicd-
ments. XQuery also includes expressions to construct nevi. XM
values and to integrate or join values from multiple docutrsen

XQuery is a natural choice for querying ad hoc data. Like XML
data, ad hoc data is semi-structured, and XQuery is tailmredch
data. XQuery’'s static type system detects type errors at com
pile time, which is valuable when querying ad hoc sourcesig-o
running queries on large ad hoc sources do not raise dyngpec t
errors, and queries made obsolete by schema evolution emé-id
fied at compile time. XQuery is also ideal for specifying grzted
views of multiple sources. Although here we focus on queryin
one ad hoc source at a time, XQuery supports simultaneoug-que

The mask allows the user to specify which ing of multiple sources. Lastly, XQuery is practical: It ixgloon

be a standard; numerous manuals already exist [5]; and itislyv

1. typedef struct { /1 In-menory representation
2. order _header _t order_header;

3. event _seq_t
4

events;

.} event _t;

5. typedef struct { /'l Mask

6. Pbase_m conpoundLevel; // Struct-level controls

7. order _header _t_m order_header;

8 event_seq_t_m events;

9. } event_t_m
10. typedef struct { /| Parse descriptor
11. Pflags_t pstate; /1 Normal, partial, or panicking
12. Pui nt 32 nerr; /'l Number of detected errors
13. PerrCode_t err Code; /1 Error code of first detected error
14. Pl oc_t | oc; /1 Location of first error
15. order _header _t_pd order_header; /'l Nested header information
16. event _seq_t_pd events; // Nested event sequence information
17. } event_t_pd;
18. /* Parsing and printing functions */
19. Perror_t event_t_read (P_t *pads, event_t_m*m event_t_pd *pd, event_t *rep);
20. ssize t event_t wite2io (P_t *pads, Sfio_t *io,

event _t _pd *pd, event_t *rep);

Figure 6. Fragment of the library generated for theevent _t declaration from Sirius data description.

implemented in commercial databases.

Galax is a complete, extensible, and efficient implemematf
XQuery 1.0 that supports XML 1.0 and XML Schema 1.0 and that
was designed with database systems research in mind. Hs arc
tecture is modular and documented [15], which makes it ptessi
for other researchers to experiment with a complete XQuapje-
mentation. Its compiler produces evaluation plans in ths diom-
plete algebra for XQuery [13], which permits experimentahpar-
ison of query-compilation techniques. Lastly, its queryimjzer
produces efficient physical plans that employ traditiomal aovel
join algorithms [13], which makes it possible to apply nomial
queries to large XML sources. Lastly, its abstract data rhpee
mits experimenting with various physical representatiohXML
and non-XML data sources. Galax’s abstract data model ifothe
cus of the the rest of this section.

3.1 Galax’s Abstract Data Model

Galax’s abstract data model is an object-oriented reaizaif the
XQuery Data Model. The XQuery Data Model [17] contains tree
nodes, atomic values, and sequences of nodes and atomé@syvalu
A tree node corresponds to an entire XML document or to an indi
vidual element, attribute, comment, or processing-imsion. Al-
gebraic operators in a query-evaluation plan produced HgxGa
query compiler access documents by applying methods inate d
model’s object-oriented interface.

Figure 7 contains part of Galax's data model interffoe a node in
the XQuery Data Model. Node accessors return informatiam su
as a node’s name ifode_nane), the XML Schema type against
which the node was validatedt(ype), and the node’s atomic-
valued data if it was validated against an XML Schema simype t

(typed_val ue). The parent, child, and attribute meth-
ods navigate the document and return a node sequence ¢ogtain
the respective parent, child, or attribute nodes of therghade.

3Galax is implemented in O’Caml, so these signatures are in
O’Caml.

The first six methods in Figure 7 (Lines 5-11) access the paysi
representation of a document. Therefore, a concrete icst@fithe
data model must provide their implementations. Galax plewi
default implementations for the four descendant and aoceges
(Lines 13-16), which are defined recursively in terms of thiddc
and parent methods. These defaults may be overridden imetenc
data models that can provide more efficient implementatibas
the defaults. For example, some representations pernsttaxee
implemented by range queries over relational tables [11].

All the axis methods take an optional node-test argumenictwh
is a boolean predicate on the names or types of nodes in tha giv
axis. For example, the XQuery expressiatescendant : : or der
returns nodes in the descendant axis with nammeder. Galax
compiles this expression into a single axis/node-testaipethat
invokes the corresponding methods in the abstract datalpoele
egating evaluation of node tests to the concrete data m&dehe
implementations, likePADX, can provide fast access to nodes by
their name. We descritmabpx’s concrete data model in Section 4.

One other important feature of Galax’s abstract data maediat
sequences are representedtbysors(also known as streams), non-
functional lists that yield items lazily. Accessing the ffiitem in

a sequence does not require that the entire sequence beatrater
ized, i.e., evaluated eagerly. Galax’s algebraic operators produce
and consume cursors of values, which permits pipelined had-s
circuited evaluation of query plans.

In addition to the concrete data model foxDx,which we describe

in the next section, Galax has three other concrete datalmode
a DOM-like representation in main memory and two “shredded”
representations, one in main memory and one in secondaggsto
for very large document®(g. > 100MB). The shredded data model
partitions a document into tables of elements, attribwied,values
that can be indexed on node names and values [16].

4 UsingPADX to Query Ad Hoc Data

Figure 8 depicts an internal view of tteaDXx architecture first
shown in Figure 2. Pre-existing components (in grey boxesyide

. type sequence = cursor
. class virtual node :
. object

method virtual node_nane
method virtual type :

:unit -> atonmi cQNane option

unit -> (schema * atom cQNane)

1
2
3
4, (* Selected XQuery Data Mdel accessors *)
5
6
7

method virtual typed_value : unit

8. (* Required axes *)

-> atomi cVal ue sequence

9. met hod virtual parent . node_test option -> node option
10. method virtual child : node_test option -> node sequence
11. method virtual attribute : node_test option -> node sequence
12. (* OGther axes *)
13. method descendant _or _sel f : node_test option -> node sequence
14. met hod descendant : node_test option -> node sequence
15. met hod ancestor _or _sel f : node_test option -> node sequence
16. met hod ancest or : node_test option -> node sequence
. Other accessors in XQuery Data Mdel
Figure 7. Signatures for methods in Galax’s abstract node iterface
1. <xs:sinpl eType nane="base_Pui nt 32" >
XML Document 2. <xs:restriction base="xs: unsi gnedl nt"/>
PADX Query Corral 3. </xs:sinpl eType>
PADS Data 4. <xs:conpl exType nane="val _Pui nt 32">
XQuery Program Gal Enai 5. <xs:choice>
i Qe Si= 6 <xs: el ement nane="rep" type="p: base_Pui nt 32"/ >
7 <xs: el ement nane="pd" type="p: Pbase_pd"/>
Galax Abstract Data Model 8. </xs:choice>
9. </xs: conpl exType>
PADX Concrete Data Model 10. <xs: conpl exType nane="Pbase_pd">
PADS Data _g pADS Compiler PADX Node 11. <xs:sequence>
Description Representation 12. <xs:element name="pstate" type="p:Pflags_t"/>
PADS Runtime System 13. <xs: el ement nane="err Code" type="p: PerrCode_t"/>
14. <xs: el ement nane="| oc" type="p: Ploc_t"/>
. . . 15. </ xs:sequence>
Figure 8. Internal view of PADX Architecture 16. </ xs: conpl exType>

the PADS compiler, the Galax query engine, and #rDS runtime
system. In this section, we focus on the hew components (itewh
boxes) and describe the compiler and run-time support fwivig
PADS data as XML. From &ADSs description, the compiler gen-
erates an XML Schema description that specifies the virthdl X
view of the correspondingADS data, an XQuery prolog that im-
ports the generated schema and that associates the inpuvidat
the correct schema type, and a type-specific library thatiges the
virtual XML view of PADS values necessary to implemembpx’s
concrete data model.

Note that a query corral isustomizedor a particularrAbsdescrip-
tion, in particular, its concrete data model only supporesve of
data sources that match theDs description. To maintain the cor-
rect correspondence between a description, XML Schemaiegue
and data, the query corral explicitly contains the gendratgery
prolog, which imports the XML Schema that corresponds to the
underlying type-specific library. This guarantees that tilser’'s
XQuery program is statically typed, compiled, and optirdizgth
respect to the correct XML Schema and that the underlying dat
model is an instance of this XML Schema. At runtime, the query
corral takes an XQuery program andaDps data source and pro-
duces the query result in XML. We discuss the problem of ptedu
ing nativerpADS values in Section 6.

Figure 9. Fragment of XML Schema for PADS base types.

4.1 ViewingPADS data as XML

The mapping from aPADS description to an XML Schema is
straight-forward. The interesting aspect of this mappgidpat both
PADS values that are error free and those containing errors are ac
cessible in the XML view. We begin with the mapping ®fDs
base types.

A default XML Schema, pads. xsd, contains the schema types
that represent theabs base types shared by ahDsdescriptions.
Figure 9 contains a fragment of this schema. Emtgsbase type

is mapped to the schema simple type that most closely sulssume
the value space of the givembs base type. For example, the
Pui nt 32 base type maps to the schema typa: unsi gnedl nt
(Lines 1-3). Recall that all parsedDsvalues have an in-memory
representation and a parse descriptor, which recordsatedtthe
parse, the error code for detected errors, and the locattibose er-
rors. The XML view of a parsed value is a choice of the in-mgmor
representation ¢ ep), if no error occurred, or of the parse descrip-
tor (pd), if an error occurred (Lines 4-8). This light-weight view
exposes the parse descriptor only when an error occurs. arsep
descriptor type for all base types is represented by thenszligpe
Pbase_pd (Line 10-14).

The fragment of the XML Schema in Figure 10 corresponds to the

nded"/ >

1. <xs:schenma target Namespace="fil e:/ exanpl e/sirius.p"

2. xm ns="file:/exanmplel/sirius.p"

3. xm ns: xs="http://ww. w3. or g/ 2001/ XM.Schema"

4. xm ns: p="http: // ww. padsproj . or g/ pads. xsd" >

5. <xs:import nanmespace = "http://ww. padsproj . org/ pads. xsd".../>
6. ...

7. <xs:conpl exType nanme="or der _header _t">

8. <xs:sequence>

9. <xs: el ement name="or der _num type="p: val _Pui nt 32"/>

10. <xs: el ement nane="att _order _nuni type="p: val _Pui nt 32"/>
11. <xs: el ement name="ord_versi on" type="p:val _Puint32"/>
12. <l-- Mre local elenent declarations -->

13. <xs: el ement nanme="pd" type="p: PStruct _pd" mnCccurs="0"/>
14. </ xs:sequence>

15. </ xs: conpl exType>

16. <!-- More conplex type declarations -->

17. <xs:conpl exType nane="orders_t">

18. <xs:sequence>

19. <xs: el ement name="el t" type="order _t" maxQccurs="unbou
20. <xs: el ement name="| engt h" type="p: Pui nt 32"/>
21. <xs: el ement nanme="pd" type="p: Parray_pd" mnCccurs="0"/>
22. </xs:sequence>
23. </ xs:conpl exType>
24. <xs:elenment name="Psource" type="summary_t"/>
25. </ xs:schema>

Figure 10. Fragment of XML Schema for SiriusPADS description.

description in Figure 4. Note that the schema imports therseh

for PADS base types (Line 5). Each compound type is mapped to a
complex schema type with a particular content modePsAr uct

is mapped to a complex type that contains a sequence of Ibcal e
ements, each of which corresponds to one field inR&er uct .

For example, thé’>st ruct order_header _t is mapped to the
complex type or der _header _t (Lines 7-15), which contains an
element declaration for the fieldbr der _num among others. A
Puni on is mapped to a complex type that contains a choice of
elements, each of which corresponds to one field irPinei on.

Each complex type also includes an optionad element that cor-
responds to the type’s parse descriptor (Lines 13 and 21). Al
parse-descriptor types contain the parse state, error, @ndelo-
cation. The parse-descriptor for compound types contadi- ad
tional information, e.g, Pstruct_pd contains the number of
nested errors andParray_pd contains the index of the array
item in which the first error occurred. Thed element is ab-
sent if no errors occurred during parsing, but if presentmgs
an analyst to easily identify the kind and location of errorshe
source data. For example, the following XQuery expressen r
turns the locations of all orders that contain at least omerer
$pads/ Psour ce/ orders/el t/pd/loc.

The schema types for some compound types contain additional
fields from thepADS in-memory representatioe,g, arrays have a
length (Line 20). Note thatPar r ay types do not associate a name
with each individual array item, so in the correspondingesca
type, the default elementl t encapsulates each array item.

The PADS compiler generates a query prolog that specifies the en-
vironment in which all XQuery programs are typed and evadat
Figure 11 contains the query prolog for the schema in FigOre 1
The import schema declaration on Line 1 imports the schema in
Figure 10. This declaration puts all global element and tygaa-
rations in scope for the query. The variable declaration o 2
specifies that the value of the variablpads is provided externally

and that its type is a document whose top-level element igpef t
Psour ce, defined on Line 24 in Figure 10. This declaration guar-
antees that the query is statically typed with respect tateect
input type.

At run time, the user can specify the input data as a commiaed-I
argument or by calling the XQueryf n: doc function on aPADS
sourcee.g. pads:/exanpl e/ sirius. data.

4.2 PADX Concrete Data Model

In Figure 8, the interface between Galax amds consists of two
modules: the generigADX concrete data model, which implements
the Galax abstract data model, and a compiler-generatedlead
which eachPADStype has a corresponding, type-specific node rep-
resentation providing the XML view of values of that type. Wie
that the generic concrete data model is implemented in Ol@arh

the compiler-generated module is implemented in C, butrtpkfy
exposition, we present the compiler-generated module @a@il
syntax.

Figure 13 contains a fragment of tlraDx concrete data model
for a node. This object provides a thin wrapper around the-typ
specific node representatiorpadx_node_r ep, whose interface is
in Figure 12. A node representation contains referencestos
value’s in-memory representation and parse descriptoe ridde
representation interface returns the XML view of #eDs value,
including the value’s element name, its typed value, anérgar
The kth_child and kth_child_by_name methods return all of
the PADS value’s children in order and those with a given name in
order, respectively.

For some methods in Figure 13 (Lines 4-5), the concrete dadin
simply invokes the corresponding type-specific methodse ©a
ception is the chi | d axis method (Lines 7-17), which we describe
in detail as it illustrates how the XML view of BADS source is
materialized lazily. The chil d method takes an optional name-

1. inport schema default el ement nanespace “fil e:/exanple/sirius.p";
2. declare variable $pads as docunent - node(Psource) external;

Figure 11. PADX generated query prolog

class virtual padx_node_rep :

obj ect
(* Private data includes parsed value's rep & pd *)
met hod node_name : unit -> string
met hod typed_value : unit -> item
met hod parent ©unit -> padx_node_rep option
method kth_child : int -> padx_node_rep option

method kt h_child_by_nanme : int -> string -> padx_node_rep option
end

Figure 12. TherPADX node representation

1. class pads_node (nr : padx_node_rep) =
2. object

3 inherit Gal ax.node

4. met hod node_nane () = nr#node_nane()
5. met hod typed_val ue () = nr#typed_val ue()
6 (* ... Other data nodel accessors ... *)
7 method chi |l d name_test =

8 let k =ref 0in

9. mat ch name_test with

10. | None ->

11. let lazy_child () =

12. (incr k;

13. match nr#kth_child 'k with

14, | Some cnr -> Sone(new pads_node(cnr))
15. | None -> None)

16. in Cursor.cursor_of _function lazy_child
17. | Some (NameTest name) ->

(* Same as above, but call nr#kth_child_naned *)
18. (* ... Cther axes ... *)

Figure 13. Fragment of thePADX concrete data model

test argument. We describe the case when the name-testeistabs
which corresponds to the common expressichi | d::*. The
chi | d method creates a mutable counté&r(Line 8), which con-
tains the index of the last child accessed, and a continuétioc-
tion lazy_child (Lines 11-16), which is invoked each time the
chi | d cursor is poked. On each invocatior,azy_chi | d incre-
ments the counter and delegates to tkieh_chi | d method of the
type-specific node representation. For samestypes, accessing
the virtual K child does not require reading or parsing datag, if

the virtual child is part of a completeaDsrecord. For othepADS
tyﬁ)es,e.g, Par r ays that contain file records, accessing the virtual
kth child may require reading and parsing data. Tkeh_child
method provides a uniform interface to all types and dekgytite

loaded are anyADS types annotated witlr ecor d, which in-
dicates that the type denotes an atomic physical unit in the a
bient coding. This default works well in practice, becausanyn
PADS sources contain a header, one (or more) very large array(s)
of records, and a trailer. This strategy loads all the datarbehe
record array(s) and then loads each array item on demanel)iegp

old records when the buffer is filled. A small amount of me#diad

is preserved for each expelled record, so that the virtudé reon-
taining that data can be reconstructed on subsequent ascess

The on-demand, sequentiatrategy is a restriction of the on-
demand, random-access strategy. It loads data on demanits bu
fixed-size buffer stores only one record at a time, and it stipp

problem of when to read and parse data to the underlying type- strictly sequential access to records,, accessing records out of

specific node representation.

To illustrate type-specific compilation, we give the corapil
generated node representation of amder _header _t value in

order is prohibited. Given that the Galax abstract data inae
quires random access, it is not obvious when this strategybea
used, even though it has the smallest memory footprint dhedle

and therefore could scale to very large sources. It turnghait

Figure 14. The object takes the name of the field that contains many common XQuery queries can be evaluatednesequential

the order_header _t value, which corresponds to the XML node
name, and the in-memory representation and parse desafte
value. The kt h_chi | d method (Lines 9-15) takes an index and re-
turns the node representation of the field at that index. ¥amele,
the first child (Line 11) corresponds to the fielat der _num which
contains aPui nt 32 value. The kth_child_by_name method
(Lines 16-21) provides constant-time lookup of a child veithar-

ticular name: It looks up the index of the name in the associa-

tive map name_map and then delegates tdt h_chi | d. Note that
this XML view of an order _header _t value corresponds to the
schema typeor der _header _t in Figure 10.

To summarize, the@ADX concrete data model completely imple-

ments the Galax data model, making it possible to evaluage an

XQuery program over ®ADS data source. Due to limited space,
we have omitted some details, such as vpx guarantees that
each virtual node has a unique, immutable identity, as isireq
by the Galax abstract data model. The data model’s most tiaptor
features are that it provides lazy access to virtual XML rsoife

the PADS source, it delegates navigation to type-specific node rep-

resentations, and it separates navigation of the virtudésdrom
data loading, which is discussed next.

4.3 LoadingPADS data

The PADX abstract data model provides Galax with a random-

access view of ®ADS data source. In particular, any virtual node
may be accessed in any order at any time during query evafuati
regardless of its physical location in theDsdata. This abstraction

permits thePADX concrete data model to decide when and how to

read and parse, dwad, a data source.

PADX has three strategies for loading data, each of which use the

multiple-entry parsing functions generated by theds compiler.
Thebulk strategy loads a compleraDs source before query eval-
uation begins, populating all the in-memory representatiand
parse descriptors. With all data pre-fetched, bulk loadrige sim-
plest strategy to implement random access. However, beeach
pADSVvalue has a lot of associated meta-data, bulk loading irecurs
high memory cost and is only feasible for smaller data s@urce

The on-demand, random-accessrategy loadsPADS data when
Galax accesses virtual nodes via the abstract data modektidt-
egy maintains a fixed size buffer for loaded values and when th
buffer is filled, expels values in LIFO order. The default tani

scan over the input document, and in these cases, the seduent
strategy is both semantically correct and time and spacsiesfti

We give examples of “one-scan” queries and their performmanc
Section 5.

4.4 Ways to usePADX

Our focus so far has been on describirgpx’s internal architec-
ture to demonstrate the feasibility of viewing and queryéghoc
data sources as though they were XML. We expect this usgmX

to be convenient, because it supports rapid querying obigah
data and does not require an analyst to convert the dataniotoer
format or load it into a database before being able to asklsimp
queries. PADX can be used in other ways. For example, an ana-
lyst might prefer to materialize BaDS source in XML and query
her data using a high-performance, commercial XML queryreng

To do this, the analyst simply runs the quengpads”, which re-
turns the entire source materialized in XML, and then presithe
resulting XML document to the query engine. Another use is to
transform therADX view of aPADS source into the XML view re-
quired by a database by some down-stream application. St
formations can be easily expressed in XQuery and can beatgti
type checked against tiaDx and target XML schemata.

We note, however, that the size of an ad hoc data source igisign
cantly smaller than its representation in XML. For our twaeple
PADS sources, the ratio of the size of the origimalDs data to its
size in XML using the mapping described in Section 4.1 ranges
from 1:7 to 1:8. Of course, this size increase depends oRAbs
types and field names in tira Dsdescription, but even a reasonable
choice of names like those in Figure 4 results in a signifisae in-
crease. We mention this size increase to give the reader sense

of the relative scale of data sources thabx can query compared

to those supported by native XML query engines.

5 Performance

Query performance irRADX depends on the efficiency of the under-
lying concrete data model; therefore its performance mesvéll
understood before we can understand the performance afyart
lar query plans. We focus on the performance of the concratiz d
model and measure the cost of accessing data viaAbs type-
specific parsing functions, ttaDX type-specific node representa-
tions, and the generieADX concrete data model. At the end of this
section, we give preliminary measurements on query pedoo®.

. class order_header_t _node_rep
(field_name : string)
(rep : order_header_t)
(pd : order_header_t_pd) =

inherit padx_node_rep

1
2
3
4.
5. object
6
7 met hod name() = field_nane
8

9. method kth_child idx =

10. match idx with

11. | 1 -> Sone(new val _Puint32_node_rep("order_nunt', rep.order_num pd.order_num pd))

12. | 2 -> Some(new val _Puint32_node_rep("att_order_nuni', rep.att_order_num pd.att_order_num pd))
13. [...

14. | 14 -> Sone(new Pstruct_pd_node_rep("pd", pd))

15. | _ -> None

16. (* Chidren’s nane map *)

17. let name_map = Associative_array.create [("order_nunt, 1); ("att_order_nunt, 2); ...; ("pd", 14)]
18. met hod kt h_chil d_by_name child_name =

19. mat ch Associative_array. | ookup name_map child_nanme with

20. | None -> Cursor.enpty_cursor()

21. | Some idx -> kth_child idx

22. end

Figure 14. Fragment of compiler-generated node representin for or der _header _t

Data size (MB) PADX | PADX
Source 1 5 10 20 50 Data | PADS | node | generic
Sirius 0.25] 0.23[0.23| 0.22| 10.64 Source size read rep DM
Web server| 0.70 | 0.67 | 0.67 | 1.18| 6.14 5MB | 0.07| 0.27 0.61
Table 1. Bulk strategy: load time per byte inps Sirius 10MB | 0.06 | 0.26 0.56

50MB | 0.06| 0.25 0.56
5MB | 054 | 0.78 1.63

We measured data model and query performance for Fimms Web server| 10MB | 0.53 | 0.74 1.61
sources, Sirius and the Web server logs in Figure 1, on datas® SOMB | 0.53 | 0.74 1.58

of 1 to 50MB in size. Our measurements were taken on an 1.67GHz Table 2. Sequential strategy: load time per byte irus
Intel Pentium M with 500MB real memory running Linux Redhat
9.0. Each test was run five times, the high and low times were
dropped, and the mean of the remaining three times is thetezbo

. model is in O'Caml.
time.

We observe that the load time per byte at each level is neataxan
5.1 Concrete Data Model for increasing source size, but that each level incurs atantial
cost compared to the lower levels. For the Sirius sourcepAlm
We first measured the time to bulk load data sources of 5, 1,0, 20 node-representation is four times slower than the naes pars-
and 50MB by calling thePADS parsing functionsi.e., the lowest ing functions, but for the Web-server source, theX node rep-
level in thePADX data model. Table 1 gives the load time per byte resentation is only 44% slower. Understanding the souraaisf
in microseconds. For smaller sources, load time is conskat difference requires further experiments with other sosirce
eventually increases. For Sirius, the increasing load isneb-
served at 50MB and for the Web server data at 20MB. We note that For both sources, the generic concrete data model (in O'Caml

for a PADS source, the memory overhead oPaDs parsed value is twice as slow as the node representation (in C). The axterf
can be four to sixteen times the size of the raw data, depgrudin from the generic data model to the node representationasdbe
the value’s type. In the cases where non-linear load timarscthe O’Caml-C boundary and uses data marshalling functions rgene
processes’ physical memory usage is close to or exceedsesad ated by the O’Caml IDL tool. We have noticed similar per-byte

ory, CPU utilization plummets, and the process begins tastnr read costs in the Galax secondary storage system [16], vdzdae
These measurements indicate that the bulk strategy is eagilfle model architecture is similar to that BADX.
for smaller data sources.

We also measured the time to load using the on-demand, random
Next, we measured load time using the on-demand sequetdial s access strategy. In general, it was 10-15% slower than the on
egy on sources of 5, 10, and 50 MB. We were particularly irsteic demand, sequential strategy.
in the overhead introduced at each level in the concreterdatie!.
Table 2 gives the load time per byte in microsecongs for three These measurements indicate that the on-demand, sedstratia
levels: reading the source by calling theDs parsing functions di- egy scales with increasing data size, and that there is garins
rectly, a depth-first walk of the virtual XML document by déad overhead incurred at each level in the data model. Ideadiyyauld
the PADX node-representation functions, and a depth-first walk of like the cost of accessing data via the generic concreterdatkel
the virtual XML document by calling theabx generic data model. to be close to theAaDs read cost, but this will require more engi-
Recall that the node-rep functions are in C and the genetiz da neering effort.

Datasize(MB)| 1| 5| 10| 20| 50 related queries.
Time (seconds) 1.0 | 4.8 | 10.7] 24.0 | 90.0

Table 3. PADX query evaluation time in seconds A PADX query corrall is an example of partially compiled query
engine, because its concrete data model is customized fartia-p
. ular data format, but its queries are interpreted over attatiglata
5.2 Querying model that delegates to the concrete model. This architeptaces
PADX on the continuum between query architectures that provide
Ultimately, PADX’s query performance depends on Galax, because fully interpreted query plans applied to generic data modelar-
the Galax compiler produces and executes the query plans. Cu chitectures that provide fully compiled query plans applie cus-

rently, Galax’s query compiler includes a variety of logdicpti- tomized data model instances [10]. The latter architestprevide
mizations for detecting joins and re-grouping construct&Query very high performance on large scale dataDx has some of the
expressions. Another important optimization is detectiigen a benefits of such architectures but does not have the ovedfead

query can be evaluated in one scan over the input documetit. Pa complete database system.
expressions that contain only descendant axes and no lesach

one example of the kind of queries that can be evaluated iscare Others share our interest in declarative descriptions dfcaddata
For example, the following query, which returns the locasiof all formats. Currently, the Global Grid Forum is working on ansta
records containing some error in a Sirius source, can beaeal dard data-format description language for describing ad deia
in one scan: formats, calledrDL [3, 4]. Like PADS, DFDL has a rich collection
of base types and supports a variety of ambient codings. k&nli
$pads/ Psour ce/ orders/ el t/pd/ | oc PADS, DFDL does not support semantic constraints on types nor de-

pendent typese.g, it is not possible to specify that the length of
an array is determined by some field in the datepL is an anno-
tated subset of XML Schema, which means that the XML view of
the ad hoc data is implicit in aFDL description.DFDL is still be-

ing specified, so noFDL-aware parsers or data analyzers exist yet.
We expect that bi-directional translation betwe®ms and DFDL

to be straightforward. Such a translation would make it iixbes$or
DFDL users to useADX to query their ad hoc data sources.

Detecting and evaluating one-scan queries (also knowrreanst
able queries) is necessary in XML environments in which tiLX
data is an infinite or bursty stream. Several query processler
ready exist in which streamable queries are evaluatedthjireger

a stream of tokens produced by SAX-style parsers [9, 14].

Streamable queries are important ferdbx, because the resulting
plans can be evaluated on largeDs sources that are loaded on-
demand and sequentially. Table 3 contains the time in sectmd
evaluate the query above when appliedPtas data sources into
which we injected errors randomly in the file (12 errors peB)M
The query plan produced by Galax is not perfectly pipelirieds
the execution time is super linear.

The steps in a data-management workflow thatx addresses typ-
ically precede the steps that require a high-performantabdae
system,e.g, asking complex OLAP queries applied to long-lived,
archived data. Commercial database products do provideosup
for parsing data in external formats so the data can be iraganto
their database systems, but they typically support a lanitember

of formats,e.g, COBOL copybooks, no declarative description of
the original format is exposed to the user for their own usg a
they have fixed methods for coping with erroneous data. Femeth
reasonspADX is complementary to database systems.

To understand the costs and benefits of other evaluatiotegiea,

we materialized the 1IMBADS source in Table 3, which yielded a
7.4MB XML document. We then used Galax to execute the above
query, using the same query execution plan, and appliedtiie¢o
7.4MB XML document loaded into the main-memory data model.
The execution time was 13.1s of which 12.9 was spent in donume
parsing. To amortize the cost of document parsing time, wenof
store documents in Galax’s secondary storage system. Tparem
with this strategy, we stored the 7.4MB XML document in Galax
secondary storage system, which required 166MB of diskespac
We then ran the above query on the stored document. The execu
tion time was 2.9s, almost three times slower thapx applied to

the PADS data directly. For comparison with an independent query
processor, we evaluated the above query using Saxon [12hw p

lar XSLT and XQuery engine, applied to the 7.4MB document and
it executed in 6.3s.

We continue to focus on improving the usability and scaigbdf
PADX. Currently,PADX is not compositional, because the result of
evaluating a query is in native XML, not inraDs format. Given
an arbitrary XQuery expression ovePaDX source, an open prob-
lem is being able to infer a reasonalsleDs format for the result
‘and produce the results in this format. We have already s
the important problem of detecting when a query can be etedua
in a single scan over an input document and of producing & full
pipelined execution plan. Interestingly, this problenmigortant in
XML environments in which the XML data is an infinite or bursty
stream. We are working on improving Galax’s ability to detec
one-scan queries and to produce query plans that are indéed f

In summary, our initial impressions are that evaluatingastmable pipelined and that use limited memory.

XQuery expressions directly onraDs source is feasible, efficient,
and convenient.
7 References

6 Discussion [1] Galax user manuaht tp: // wwmv. gal axquery. org.

ThePADX system solves important data-management tasks: it sup- [2]1 PADS user manuahttp: //ww. padsproj . org/.

ports declarative description of ad hoc data formats, issidgtions [3] Data format description language (DFDL) a Proposal, ki Draft,
serve as living documentation, and it permits exploratibacbhoc Global Grid Forum. https://forge. gridf orum org/ projects/
data and vetting of erroneous data using a standard quegydae. df dl - wg/ document / DFDL_Pr oposal / en/ %, Aug 2005. Global
The resultingpADS descriptions and queries are robust to changes Grid Forum.

that may occur in the data format, making it possible for nibem [4] M. Beckerle and M. Westhead. GGF DFDL primeit t p: / / waw.

one person to profitably use and understard@x description and ggf . or g/ Meet i ngs/ GGF11/ Docunent s/ DFDL_Pri mer _v2. pdf,

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]

[21]

May 2004. Global Grid Forum.

M. Brundage.XQuery: The XML Query Languagé&ddison-Wesley,
2004.

C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. $phatk.
Gigascope: High performance network monitoring with an S@L
terface. INSIGMOD ACM, 2002.

M. Fernandez, J. Siméon, B. Choi, A. Marian, and G. Simple-
menting XQuery 1.0: The Galax Experience.Aroceedings of Inter-
national Conference on Very Large Databases (VLOB)ges 1077—
1080, Berlin, Germany, Sept. 2003.

K. Fisher and R. Gruber. PADS: A domain-specific langugepro-
cessing ad hoc data. FProceedings of the ACM SIGPLAN 2005 con-
ference on Programming language design and implementafione
2005.

D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Rictal. West-
mann, M. J. Carey, and A. Sundararajan. The BEA streamingexQu
processorVLDB J, 13(3):294-315, 2004.

R. Greer. Daytona and the fourth generation languagebay. In
Proceedings of ACM Conference on Management of Data (SIGIMOD
1999.

T. Grust, M. van Keulen, and J. Teubner. Staircase jo@ach a rela-
tional DBMS to watch its axis steps. Proceedings of International
Conference on Very Large Databases (VLDigges 524-535, Berlin,
Germany, Sept. 2003.

M. Kay. SAXON 8.0. SAXONICA.com.
http://ww. saxoni ca. conl .

C. Ré, J. Siméon, and M. Fernandez. A complete andiefii al-
gebraic compiler for XQuery. lfProceedings of IEEE International
Conference on Data Engineering (ICDBpril 2006.

K. Rose and L. Villard. Phantom XML. IXML Conference and
Exhibition, 2005.

J. Siméon and M. F. Fernandez. Build your own XQuery
processor. EDBT Summer School, Tutorial on Galax ar-
chitecture, Sept 2004. http://ww. gal axquery. org/slides/
edbt - sumrer - school 2004. pdf .

A. Vyas, M. F. Fernandez, and J. Siméon. The simplédt.)$torage
manager ever. I XIME-P 2004 pages 37-42, Paris, France, June
2004.

W3C. XQuery 1.0 and XPath 2.0 data model, Oct. 2008.t p:
| www. 3. or g/ TR/ quer y- dat anodel / .

Extensible markup language (XML) 1.0. W3C Recommeiotiat-eb.
2004.htt p: // www. w3. or g/ TR/ 2004/ REC- xn - 20040204/ .

XPath 2.0. W3C Working Draft, Oct. 2005t t p: / / ww. w3. or g/
TR/ xpat h20.

XQuery 1.0: An XML query language. W3C Working Draft, Oc
2005.http: //ww. w3. or g/ TR/ xquery/ .

XML schema part 1: Structures. W3C Recommendation, 2@d4.
http://mww.w3.0rg/TR/2004/REC-xmischema-1-20041028/

