
PADX : Querying Large-scale Ad Hoc Data with XQuery

Mary Fernández
Kathleen Fisher

AT&T Labs Research

{mff,kfisher}@research.att.com

Robert Gruber
∗

Google

gruber@google.com

Yitzhak Mandelbaum
Princeton University

yitzhakm@cs.princeton.edu

Name : Use Representation
Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
AT&T provisioning data : Variable-width ASCII records
Monitor service activation
Call detail: Fraud detection Fixed-width binary records
AT&T billing data : Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Medical diagnoses Floating point numbers
SnowMed: Medical clinic notes Keyword tags

Figure 1. Selected ad hoc data sources.

Abstract

This paper describes our experience designing and implementing
PADX, a system for querying large-scale ad hoc data sources with
XQuery. PADX is the synthesis and extension of two existing sys-
tems:PADS and Galax. WithPADX, an analyst writes a declarative
data description of the physical layout of her ad hoc data, and the
PADScompiler produces customizable libraries for parsing the data
and for viewing it as XML. The resulting library is linked with an
XQuery engine, permitting the analyst to view and query her ad hoc
data sources using XQuery.

1 Introduction

Although enormous amounts of data exist in “well-behaved” for-
mats such as XML and relational databases, massive amounts also
exist in non-standard orad hocdata formats. Figure 1 gives some
sense of the range and pervasiveness of such data. Ad hoc data
comes in many forms: ASCII, binary, EBCDIC, and mixed for-
mats. It can be fixed-width, fixed-column, variable-width, or even
tree-structured. It is often quite large, including some data sources
that generate over a gigabit per second [6]. It frequently comes with
incomplete and/or out-of-date documentation, and there are almost
always errors in the data. Sometimes these errors are the most in-
teresting aspect of the data,e.g., in log files where errors indicate
that something is going wrong in the associated system.

The lack of standard tools for processing ad hoc data forces analysts

∗Work carried out while at AT&T Labs Research.

to roll their own tools, leading to scenarios such as the following.
An analyst receives a new ad hoc data source containing poten-
tially interesting information and a list of pressing questions about
that data. Could she please provide the answers to the questions
as quickly as possible, preferably last week? The accompanying
documentation is outdated and missing important information, so
she first has to experiment with the data to discover its structure.
Eventually, she understands the data well enough to hand-code a
parser, usually in C or PERL. Pressed for time, she interleaves code
to compute the answers to the supplied questions with the parser.
As soon as the answers are computed, she gets a new data source
and a new set of questions to answer.

Through her heroic efforts, the data analyst answered the neces-
sary questions, but the approach is deficient in many respects. The
analyst’s hard-won understanding of the data ended up embedded
in a hand-written parser, where it is difficult for others to benefit
from her understanding. The parser is likely to be brittle with re-
spect to changes in the input sources. Consider, for example, how
tricky it is to figure out which $3’s should be $4’s in a PERL parser
when a new column appears in the data. Errors in the data also pose
a significant challenge in hand-coded parsers. If the data analyst
thoroughly checks for errors, then the error checking code dom-
inates the parser, making it even more difficult to understand the
semantics of the data format. If she is not thorough, then erroneous
data can escape undetected, potentially (silently!) corrupting down-
stream processing. Finally, during the initial data exploration and
in answering the specified questions, the analyst had to codehow to
computethe questions rather than being able to express the queries
in a declarative fashion. Of course, many of these pitfalls can be
avoided with careful design and sufficient time, but such luxuries
are not available to the analyst. However, with the appropriate tool
support, many aspects of this process can be greatly simplified.

We have two tools,PADS [2, 8] and Galax [1, 7], each of which
addresses aspects of the analyst’s problem in isolation. The PADS
system allows analysts to describe ad hoc data sources declara-
tively and then generates error-aware parsers and tools forma-
nipulating the sources, including statistical profiling tools. Such
support allows the analyst to produce a robust, error-awareparser
quickly. The Galax system supports declarative querying ofXML
via XQuery. If Galax could be applied to ad hoc data, it would al-
low the analyst first to explore the data and then to produce answers
to her questions.

In this work, we strive to integratePADS and Galax to solve the an-
alyst’s data-management problems for the large ad hoc data sources
that we have seen in practice. One approach would be to havePADS
produce a tool for converting ad hoc data to XML and then ap-

Data Description
 Compiler

PADX Query
 Corral

Ad Hoc Data
 Description

Queries

Ad Hoc Data

Query Results

Queries

Ad Hoc Data

Query Results

 Generated
 Data Parsing &
 XML Viewing
 Libraries

Figure 2. Data analyst’s view ofPADX

ply Galax to the resulting document. (In fact,PADS provides this
ability.) However, the typical factor of eight space blow upin this
conversion yields an unacceptable slowdown in performance. Con-
sequently, we chose to design and implementPADX1, a synthesis
and extension ofPADS and Galax. Figure 2 depictsPADX from the
analyst’s perspective. The analyst provides aPADS description of
her ad hoc source, which is compiled into a library of components
for parsing her data and for viewing and querying it as XML. The
resulting libraries are linked together with thePADSand Galax run-
time systems into onePADX query executable, called a “query cor-
ral.2” At query time, the analyst provides her ad hoc data sources
and her query written in XQuery, andPADX produces the query’s
results.

Building PADX presented several problems. The first was semantic:
We had to decide how to view ad hoc data as XML and how to
express this view as a mapping from thePADS type system to XML
Schema, the basis of XQuery’s type system. A second problem
involved systems design and engineering. BuildingPADX required
evolvingPADSand Galax in parallel, modifying the implementation
of Galax to support an abstract data model so that Galax couldview
non-XML sources as XML, and augmentingPADS with the ability
to generate concrete instances of this data model. Our solutions to
these problems, which were necessary to build a working system,
are described in Sections 3 and 4. A third problem involves the scale
of data and efficiency of queries, in particular, how to efficiently
evaluate complex queries over large sources. Section 5 describes
how PADX currently handles large sources and the problems that
we face with respect to data scale and query performance.

We begin with a more detailed account of a scenario that illustrates
the data management tasks faced by AT&T data analysts and how
PADX simplifies these tasks. We then crack open thePADX architec-
ture, first describingPADSand Galax in isolation, and then describ-
ing our solutions to the problems described above. We conclude
with related work and a discussion of open problems.

1.1 Data-management scenario

In the telecommunications industry, the termprovisioningrefers to
the process of converting an order for phone service into theac-
tual service. This process is complex, involving many interactions
with other companies. To discover potential problems proactively,
the Sirius project tracks AT&T’s provisioning process by compil-
ing weekly summaries of the state of certain types of phone service
orders. These summaries, which are stored in flat ASCII text files,

1Pronounced “paddocks”, an enclosed area for exercising race
horses.

2The equestrian metaphor is intentional: Getting these systems
to work together is like corralling race horses!

can contain more than 2.2GB of data per week.

The summaries store the processing date and one record per order.
Each order record contains a header followed by a nested sequence
of events. The header has 13 pipe separated fields: the order num-
ber, AT&T’s internal order number, the order version, four different
telephone numbers associated with the order, the zip code, abilling
identifier, the order type, a measure of the complexity of theorder,
an unused field, and the source of the order data. Many of these
fields are optional, in which case nothing appears between the pipe
characters. The billing identifier may not be available at the time
of processing, in which case the system generates a unique identi-
fier, and prefixes this value with the string “noii” to indicate the
number was generated. The event sequence represents the various
states a service order goes through; it is represented as a new-line
terminated, pipe separated list of state, timestamp pairs.There are
over 400 distinct states that an order may go through during provi-
sioning. It may be apparent from this description that English is a
poor language for describing data formats!

The analyst’s first task is to write a parser for the Sirius data format.
Like many ad hoc data sources, Sirius data can contain unexpected
or corrupted values, so the parser must handle errors robustly to
avoid corrupting the results of analyses. WithPADS, the analyst
writes a declarative data description of the physical layout of her
data. The language also permits the analyst to describe expected
semantic properties of her data so that deviations can be flagged
as errors. The intent is to allow an analyst to capture in aPADS
description all that she knows about a given data source.

Figure 4 gives thePADS description for the Sirius data format. In
PADS descriptions, types are declared before they are used, so the
type that describes the entire data source,summary_t, appears at
the bottom of the description (Line 42). In the next section,we
use this example to give an overview of thePADS language. Here,
we simply note that the data analyst writes this description, and
thePADS compiler produces customizable C libraries and tools for
parsing, manipulating, and summarizing the data. The fact that use-
ful software artifacts are generated fromPADSdescriptions provides
strong incentive for keeping the descriptions current, allowing them
to serve as living documentation.

Analysts working with ad hoc data often want to query their data.
Questions posed by the Sirius analyst include “Select all orders
starting within a certain time window,” “Count the number oforders
going through a particular state,” and “What is the average time re-
quired to go from a particular event state to another particular event
state”. Such queries are useful for rapid information discovery and
for vetting errors and anomalies in data before that data proceeds to
a down-stream process or is loaded into a database.

With PADX, the analyst writes declarative XQuery expressions to
query her ad hoc data source. Because XQuery is designed to ma-
nipulate semi-structured data, its expressiveness matches ad hoc
data sources well. As a Turing-complete language, XQuery ispow-
erful enough to express all the questions above. For example, Fig-
ure 5 contains an XQuery expression that produces all ordersthat
started in October, 2004. In Section 4, we discuss in more detail
why XQuery is an appropriate query language for ad hoc data. One
benefit is that XQuery queries may be statically typed, whichhelps
detect common errors at compile time. For example, static typing
would raise an error if the path expression in Figure 5 referred to
ordesr instead of orders, or if the analyst erroneously compared
the timestamp value intstamp to a string.

0|15/Oct/2004:18:46:51
9152|9152|1|9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0|APRL1|DUO|10|16/Oct/2004:10:02:10
9153|9153|1|0|0|0|0||152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|17/Oct/2004:08:14:21

Figure 3. Tiny example of Sirius provisioning data.

1. Precord Pstruct summary_header_t {
2. "0|";
3. Punixtime tstamp;
4. };

5. Pstruct no_ramp_t {
6. "no_ii";
7. Puint64 id;
8. };

9. Punion dib_ramp_t {
10. Pint64 ramp;
11. no_ramp_t genRamp;
12. };

13. Pstruct order_header_t {
14. Puint32 order_num;
15. ’|’; Puint32 att_order_num;
16. ’|’; Puint32 ord_version;
17. ’|’; Popt pn_t service_tn;
18. ’|’; Popt pn_t billing_tn;
19. ’|’; Popt pn_t nlp_service_tn;
20. ’|’; Popt pn_t nlp_billing_tn;
21. ’|’; Popt Pzip zip_code;
22. ’|’; dib_ramp_t ramp;
23. ’|’; Pstring(:’|’:) order_type;
24. ’|’; Puint32 order_details;
25. ’|’; Pstring(:’|’:) unused;
26. ’|’; Pstring(:’|’:) stream;
27. };

28. Pstruct event_t {
29. Pstring(:’|’:) state;
30. ’|’; Punixtime tstamp;
31. };

32. Parray event_seq_t {
33. event_t[] : Psep(’|’) && Pterm(Peor);
34. };

35. Precord Pstruct order_t {
36. order_header_t order_header;
37. ’|’; event_seq_t events;
38. };

39. Parray orders_t {
40. order_t[];
41. };

42. Psource Pstruct summary_t{
43. summary_header_t summary_header;
44. orders_t orders;
45. };

Figure 4. PADS description for Sirius provisioning data.

(: Return orders started in October 2004 :)
$pads/Psource/orders/elt[events/elt[1]

[tstamp/rep >= xs:dateTime("2004-10-01:00:00:00")
and tstamp/rep < xs:dateTime("2004-11-01:00:00:00")]]

Figure 5. Query applied to Sirius provisioning data.

2 UsingPADS to Access Ad Hoc Data

In this section, we give a brief overview ofPADS, focusing on its
data description language and the portions of the librariesit gen-
erates that are relevant toPADX. More information aboutPADS is
available [2, 8].

2.1 PADS: The language

A PADS specification describes the physical layout and semantic
properties of an ad hoc data source. The language provides a type-
based model: basic types specify atomic data such as integers,
strings, dates,etc., while structured types describe compound data
built from simpler pieces. ThePADS library provides a collection of
useful base types. Examples include 8-bit signed integers (Pint8),
32-bit unsigned integers (Puint32), IP addresses (Pip), dates (
Pdate), and strings (Pstring). By themselves, these base types
do not provide sufficient information for parsing because they do
not indicate how the data is coded,i.e., in ASCII, EBCDIC, or bi-
nary. To resolve this ambiguity,PADS uses theambientcoding. By
default, the ambient coding is ASCII, but programmers can cus-
tomize it as appropriate.

To describe more complex data,PADSprovides a collection of struc-
tured types loosely based on C’s type structure. In particular, PADS
hasPstructs, Punions, andParrays to describe record-like
structures, alternatives, and sequences, respectively.Penums de-
scribe a fixed collection of literals, whilePopts provide convenient
syntax for optional data. A type may have an associated predicate
that determines whether a parsed value is indeed a legal value for
the type. For example, a predicate might require that one field of
a Pstruct is bigger than another or that the elements of a se-
quence are sorted. Programmers can specify such predicatesusing
PADSexpressions and functions, written in a C-like syntax. Finally,
PADSPtypedefs allow programmers to define new types that add
further constraints to existing types.

PADS types can be parameterized by values. This mechanism re-
duces the number of base types and permits the format and proper-
ties of later portions of the data to depend upon earlier portions. For
example, the base typePuint16_FW(:3:) specifies an unsigned
two byte integer physically represented by exactly three characters,
while the type Pstring(:’|’:) (e.g., Line 29) describes a string
terminated by a vertical bar. Parameters can be used with compound
types to specify the size of an array or the appropriate branch of a
union.

Pstructs describe ordered sequences of data with unrelated
types. In Figure 4, the type declaration for thePstruct order_t
(Lines 35–38) contains an order header (order_header_t) fol-
lowed by the literal character’|’, followed by an event sequence
(event_seq_t). PADS supports character, string, and regular ex-
pression literals.

Punions describe alternatives in the data format. For example, the
dib_ramp_t type (Lines 9–12) indicates that theramp field in a
Sirius record can be either aPuint_64 or a string "no_ii" fol-
lowed by a Puint_64. During parsing, the branches of aPunion
are tried in order; the first branch that parses without erroris taken.

The order_header_t type (Lines 13–27) contains several anony-
mous uses of thePopt type. This type is syntactic sugar for a
stylized use of aPunion with two branches: the first with the in-
dicated type, and the second with the “void” type, which always
matches but never consumes any input.

PADS providesParrays to describe varying-length sequences of
data all with the same type. Theevent_seq_t type (Lines 32–
34) uses aParray to characterize the sequence of events an or-
der goes through during processing. This declaration indicates that
each element in the sequence has typeevent_t. It also specifies
that the elements will be separated by vertical bars, and that the
sequence will be terminated by an end-of-record marker (Peor).
In general,PADS provides a rich collection of array-termination
conditions: reaching a maximum size, finding a terminating literal
(including end-of-record and end-of-source), or satisfying a user-
supplied predicate over the already-parsed portion of theParray.

Finally, thePrecord (Line 35) andPsource (Line 42) annota-
tions deserve comment. The first indicates that the annotated type
constitutes a record, while the second means that the type consti-
tutes the totality of a data source. The notion of a record varies
depending upon the data encoding. ASCII data typically usesnew-
line characters to delimit records, binary sources tend to have fixed-
width records, while COBOL sources usually store the lengthof
each record before the actual data.PADSsupports each of these en-
codings of records and allows users to define their own encodings.

2.2 PADS: The generated library

From a description, thePADS compiler generates a C library for
parsing and manipulating the associated data source. From each
type in aPADS description, the compiler generates

• an in-memory representation,

• parsing and printing functions,

• a mask, which allows customization of generated functions,
and

• a parse descriptor, which describes syntactic and semanticer-
rors detected during parsing.

To give a feeling for the library thatPADS generates, Figure 6 in-
cludes a fragment of the generated library for the Siriusevent_t
declaration.

The C declarations for the in-memory representation (Line 1–4),
the mask (Line 5–9), and the parse descriptor (Line 10–17) all share
the structure of thePADS type declaration. The mapping to C for
each is straightforward:Pstructs map to C structs with appro-
priately mapped fields,Punions map to tagged unions coded as
C structs with a tag field and an embedded union,Parrays map
to a C struct with a length field and a dynamically allocated se-
quence,Penums map to C enumerations,Popts to tagged unions,
andPtypedefs to C typedefs. Masks include auxiliary fields to
control behavior at the level of a structured type, and parsedescrip-
tors include fields to record the state of the parse, the number of
detected errors, the error code of the first detected error, and the
location of that error.

The parsing functions,e.g. event_t_read on Line 19, take a
mask as an argument and returns an in-memory representationand
a parse descriptor. The mask allows the user to specify which
constraints the parser should check and which portions of the in-

memory representation it should fill in. This control allowsthe
description-writer to specify all known constraints aboutthe data
without worrying about the run-time cost of verifying potentially
expensive constraints for time-critical applications.

Appropriate error-handling is as important as processing error-free
data. The parse descriptor marks which portions of the data con-
tain errors and specifies the detected errors. Depending upon the
nature of the errors and the desired application, programmers can
take the appropriate action: halt the program, discard parts of the
data, or repair the errors. If the mask requests that a data item be
verified and set, and if the parse descriptor indicates no error, then
the in-memory representation satisfies the semantic constraints on
the data.

Because we generate a parsing function for each type in aPADS
description, we support multiple-entry point parsing, which accom-
modates larger-scale data. For a small file, a programmer cancall
the parsing function for thePADS type that describes the entire file
(e.g. summary_t_read) to read the whole file with one call. For
larger-scale data, programmers can sequence calls to parsing func-
tions that read manageable portions of the file,e.g., reading one
record at a time in a loop. The parsing code generated forParrays
allows users to choose between reading the entire array at once or
reading it one element at a time, again to support parsing andpro-
cessing very large data sources. We return to the use of multiple-
entry point parsing functions in Section 5.

3 Using XQuery and Galax

In this section, we give a brief overview of XML, XQuery, and
Galax, focusing on Galax’s data-model support for viewing non-
XML data as XML. Given the subject of this workshop, we as-
sume the reader is already familiar with XML, XQuery, and XML
Schema.

XML [18] is a flexible format that can represent many classes of
data: structured documents with large fragments of marked-up text;
homogeneous records such as those in relational databases;and het-
erogeneous records with varied structure and content such as those
in ad hoc data sources. XML makes it possible for applications
to handle all these classes of data simultaneously and to exchange
such data in a standard format. This flexibility has made XML the
“lingua franca” of data integration and exchange.

XQuery [20] is a typed, functional query language for XML that
supports user-defined functions and modules for structuring large
queries. Its type system is based on XML Schema [21]. XQuery
contains XPath 2.0 [19] as a proper sub-language, which supports
navigation, selection, and extraction of fragments of XML docu-
ments. XQuery also includes expressions to construct new XML
values and to integrate or join values from multiple documents.

XQuery is a natural choice for querying ad hoc data. Like XML
data, ad hoc data is semi-structured, and XQuery is tailoredto such
data. XQuery’s static type system detects type errors at com-
pile time, which is valuable when querying ad hoc sources: Long-
running queries on large ad hoc sources do not raise dynamic type
errors, and queries made obsolete by schema evolution are identi-
fied at compile time. XQuery is also ideal for specifying integrated
views of multiple sources. Although here we focus on querying
one ad hoc source at a time, XQuery supports simultaneous query-
ing of multiple sources. Lastly, XQuery is practical: It will soon
be a standard; numerous manuals already exist [5]; and it is widely

1. typedef struct { // In-memory representation
2. order_header_t order_header;
3. event_seq_t events;
4. } event_t;

5. typedef struct { // Mask
6. Pbase_m compoundLevel; // Struct-level controls
7. order_header_t_m order_header;
8. event_seq_t_m events;
9. } event_t_m;

10. typedef struct { // Parse descriptor
11. Pflags_t pstate; // Normal, partial, or panicking
12. Puint32 nerr; // Number of detected errors
13. PerrCode_t errCode; // Error code of first detected error
14. Ploc_t loc; // Location of first error
15. order_header_t_pd order_header; // Nested header information
16. event_seq_t_pd events; // Nested event sequence information
17. } event_t_pd;

18. /* Parsing and printing functions */
19. Perror_t event_t_read (P_t *pads, event_t_m *m, event_t_pd *pd, event_t *rep);
20. ssize_t event_t_write2io (P_t *pads, Sfio_t *io, event_t_pd *pd, event_t *rep);

Figure 6. Fragment of the library generated for theevent t declaration from Sirius data description.

implemented in commercial databases.

Galax is a complete, extensible, and efficient implementation of
XQuery 1.0 that supports XML 1.0 and XML Schema 1.0 and that
was designed with database systems research in mind. Its archi-
tecture is modular and documented [15], which makes it possible
for other researchers to experiment with a complete XQuery imple-
mentation. Its compiler produces evaluation plans in the first com-
plete algebra for XQuery [13], which permits experimental compar-
ison of query-compilation techniques. Lastly, its query optimizer
produces efficient physical plans that employ traditional and novel
join algorithms [13], which makes it possible to apply non-trivial
queries to large XML sources. Lastly, its abstract data model per-
mits experimenting with various physical representationsof XML
and non-XML data sources. Galax’s abstract data model is thefo-
cus of the the rest of this section.

3.1 Galax’s Abstract Data Model

Galax’s abstract data model is an object-oriented realization of the
XQuery Data Model. The XQuery Data Model [17] contains tree
nodes, atomic values, and sequences of nodes and atomic values.
A tree node corresponds to an entire XML document or to an indi-
vidual element, attribute, comment, or processing-instruction. Al-
gebraic operators in a query-evaluation plan produced by Galax’s
query compiler access documents by applying methods in the data
model’s object-oriented interface.

Figure 7 contains part of Galax’s data model interface3 for a node in
the XQuery Data Model. Node accessors return information such
as a node’s name (node_name), the XML Schema type against
which the node was validated (type), and the node’s atomic-
valued data if it was validated against an XML Schema simple type
(typed_value). The parent, child, and attribute meth-
ods navigate the document and return a node sequence containing
the respective parent, child, or attribute nodes of the given node.

3Galax is implemented in O’Caml, so these signatures are in
O’Caml.

The first six methods in Figure 7 (Lines 5–11) access the physical
representation of a document. Therefore, a concrete instance of the
data model must provide their implementations. Galax provides
default implementations for the four descendant and ancestor axes
(Lines 13–16), which are defined recursively in terms of the child
and parent methods. These defaults may be overridden in concrete
data models that can provide more efficient implementationsthan
the defaults. For example, some representations permit axes to be
implemented by range queries over relational tables [11].

All the axis methods take an optional node-test argument, which
is a boolean predicate on the names or types of nodes in the given
axis. For example, the XQuery expressiondescendant::order
returns nodes in the descendant axis with nameorder. Galax
compiles this expression into a single axis/node-test operator that
invokes the corresponding methods in the abstract data model, del-
egating evaluation of node tests to the concrete data model.Some
implementations, likePADX, can provide fast access to nodes by
their name. We describePADX’s concrete data model in Section 4.

One other important feature of Galax’s abstract data model is that
sequences are represented bycursors(also known as streams), non-
functional lists that yield items lazily. Accessing the first item in
a sequence does not require that the entire sequence be material-
ized, i.e., evaluated eagerly. Galax’s algebraic operators produce
and consume cursors of values, which permits pipelined and short-
circuited evaluation of query plans.

In addition to the concrete data model forPADX,which we describe
in the next section, Galax has three other concrete data models:
a DOM-like representation in main memory and two “shredded”
representations, one in main memory and one in secondary storage
for very large documents (e.g.> 100MB). The shredded data model
partitions a document into tables of elements, attributes,and values
that can be indexed on node names and values [16].

4 UsingPADX to Query Ad Hoc Data

Figure 8 depicts an internal view of thePADX architecture first
shown in Figure 2. Pre-existing components (in grey boxes) include

1. type sequence = cursor
2. class virtual node :
3. object
4. (* Selected XQuery Data Model accessors *)
5. method virtual node_name : unit -> atomicQName option
6. method virtual type : unit -> (schema * atomicQName)
7. method virtual typed_value : unit -> atomicValue sequence

8. (* Required axes *)
9. method virtual parent : node_test option -> node option

10. method virtual child : node_test option -> node sequence
11. method virtual attribute : node_test option -> node sequence

12. (* Other axes *)
13. method descendant_or_self : node_test option -> node sequence
14. method descendant : node_test option -> node sequence
15. method ancestor_or_self : node_test option -> node sequence
16. method ancestor : node_test option -> node sequence

... Other accessors in XQuery Data Model ...

Figure 7. Signatures for methods in Galax’s abstract node interface

XML Schema

XQuery Program

PADS Compiler

Galax Query Engine

PADS Data
 Description

PADS Data

XML Document

Galax Abstract Data Model

PADX Query Corral

Query Prolog

PADS Runtime System

 PADX Node
Representation

PADX Concrete Data Model

Figure 8. Internal view of PADX Architecture

the PADS compiler, the Galax query engine, and thePADS runtime
system. In this section, we focus on the new components (in white
boxes) and describe the compiler and run-time support for viewing
PADS data as XML. From aPADS description, the compiler gen-
erates an XML Schema description that specifies the virtual XML
view of the correspondingPADS data, an XQuery prolog that im-
ports the generated schema and that associates the input data with
the correct schema type, and a type-specific library that provides the
virtual XML view of PADS values necessary to implementPADX’s
concrete data model.

Note that a query corral iscustomizedfor a particularPADSdescrip-
tion, in particular, its concrete data model only supports views of
data sources that match thePADS description. To maintain the cor-
rect correspondence between a description, XML Schema, queries,
and data, the query corral explicitly contains the generated query
prolog, which imports the XML Schema that corresponds to the
underlying type-specific library. This guarantees that theuser’s
XQuery program is statically typed, compiled, and optimized with
respect to the correct XML Schema and that the underlying data
model is an instance of this XML Schema. At runtime, the query
corral takes an XQuery program and aPADS data source and pro-
duces the query result in XML. We discuss the problem of produc-
ing nativePADS values in Section 6.

1. <xs:simpleType name="base_Puint32">
2. <xs:restriction base="xs:unsignedInt"/>
3. </xs:simpleType>
4. <xs:complexType name="val_Puint32">
5. <xs:choice>
6. <xs:element name="rep" type="p:base_Puint32"/>
7. <xs:element name="pd" type="p:Pbase_pd"/>
8. </xs:choice>
9. </xs:complexType>

10. <xs:complexType name="Pbase_pd">
11. <xs:sequence>
12. <xs:element name="pstate" type="p:Pflags_t"/>
13. <xs:element name="errCode" type="p:PerrCode_t"/>
14. <xs:element name="loc" type="p:Ploc_t"/>
15. </xs:sequence>
16. </xs:complexType>

Figure 9. Fragment of XML Schema for PADS base types.

4.1 Viewing PADS data as XML

The mapping from aPADS description to an XML Schema is
straight-forward. The interesting aspect of this mapping is that both
PADS values that are error free and those containing errors are ac-
cessible in the XML view. We begin with the mapping ofPADS
base types.

A default XML Schema, pads.xsd, contains the schema types
that represent thePADSbase types shared by allPADSdescriptions.
Figure 9 contains a fragment of this schema. EveryPADSbase type
is mapped to the schema simple type that most closely subsumes
the value space of the givenPADS base type. For example, the
Puint32 base type maps to the schema typexs:unsignedInt
(Lines 1–3). Recall that all parsedPADSvalues have an in-memory
representation and a parse descriptor, which records the state of the
parse, the error code for detected errors, and the location of those er-
rors. The XML view of a parsed value is a choice of the in-memory
representation (rep), if no error occurred, or of the parse descrip-
tor (pd), if an error occurred (Lines 4–8). This light-weight view
exposes the parse descriptor only when an error occurs. The parse-
descriptor type for all base types is represented by the schema type
Pbase_pd (Line 10–14).

The fragment of the XML Schema in Figure 10 corresponds to the

1. <xs:schema targetNamespace="file:/example/sirius.p"
2. xmlns="file:/example/sirius.p"
3. xmlns:xs="http://www.w3.org/2001/XMLSchema"
4. xmlns:p="http://www.padsproj.org/pads.xsd">
5. <xs:import namespace = "http://www.padsproj.org/pads.xsd".../>
6. ...
7. <xs:complexType name="order_header_t">
8. <xs:sequence>
9. <xs:element name="order_num" type="p:val_Puint32"/>

10. <xs:element name="att_order_num" type="p:val_Puint32"/>
11. <xs:element name="ord_version" type="p:val_Puint32"/>
12. <!-- More local element declarations -->
13. <xs:element name="pd" type="p:PStruct_pd" minOccurs="0"/>
14. </xs:sequence>
15. </xs:complexType>
16. <!-- More complex type declarations -->
17. <xs:complexType name="orders_t">
18. <xs:sequence>
19. <xs:element name="elt" type="order_t" maxOccurs="unbounded"/>
20. <xs:element name="length" type="p:Puint32"/>
21. <xs:element name="pd" type="p:Parray_pd" minOccurs="0"/>
22. </xs:sequence>
23. </xs:complexType>

...
24. <xs:element name="Psource" type="summary_t"/>
25. </xs:schema>

Figure 10. Fragment of XML Schema for SiriusPADS description.

description in Figure 4. Note that the schema imports the schema
for PADS base types (Line 5). Each compound type is mapped to a
complex schema type with a particular content model. APstruct
is mapped to a complex type that contains a sequence of local el-
ements, each of which corresponds to one field in thePstruct.
For example, thePstruct order_header_t is mapped to the
complex type order_header_t (Lines 7–15), which contains an
element declaration for the fieldorder_num, among others. A
Punion is mapped to a complex type that contains a choice of
elements, each of which corresponds to one field in thePunion.

Each complex type also includes an optionalpd element that cor-
responds to the type’s parse descriptor (Lines 13 and 21). All
parse-descriptor types contain the parse state, error code, and lo-
cation. The parse-descriptor for compound types contain addi-
tional information, e.g., Pstruct_pd contains the number of
nested errors andParray_pd contains the index of the array
item in which the first error occurred. Thepd element is ab-
sent if no errors occurred during parsing, but if present, permits
an analyst to easily identify the kind and location of errorsin the
source data. For example, the following XQuery expression re-
turns the locations of all orders that contain at least one error:
$pads/Psource/orders/elt/pd/loc.

The schema types for some compound types contain additional
fields from thePADS in-memory representation,e.g., arrays have a
length (Line 20). Note thatParray types do not associate a name
with each individual array item, so in the corresponding schema
type, the default elementelt encapsulates each array item.

The PADS compiler generates a query prolog that specifies the en-
vironment in which all XQuery programs are typed and evaluated.
Figure 11 contains the query prolog for the schema in Figure 10.
The import schema declaration on Line 1 imports the schema in
Figure 10. This declaration puts all global element and typedecla-
rations in scope for the query. The variable declaration on Line 2
specifies that the value of the variable$pads is provided externally

and that its type is a document whose top-level element is of type
Psource, defined on Line 24 in Figure 10. This declaration guar-
antees that the query is statically typed with respect to thecorrect
input type.

At run time, the user can specify the input data as a command-line
argument or by calling the XQueryfn:doc function on aPADS
source,e.g. pads:/example/sirius.data.

4.2 PADX Concrete Data Model

In Figure 8, the interface between Galax andPADS consists of two
modules: the genericPADX concrete data model, which implements
the Galax abstract data model, and a compiler-generated module, in
which eachPADS type has a corresponding, type-specific node rep-
resentation providing the XML view of values of that type. Wenote
that the generic concrete data model is implemented in O’Caml and
the compiler-generated module is implemented in C, but to simplify
exposition, we present the compiler-generated module in O’Caml
syntax.

Figure 13 contains a fragment of thePADX concrete data model
for a node. This object provides a thin wrapper around the type-
specific node representation,padx_node_rep, whose interface is
in Figure 12. A node representation contains references to aPADS
value’s in-memory representation and parse descriptor. The node
representation interface returns the XML view of thePADS value,
including the value’s element name, its typed value, and parent.
The kth_child and kth_child_by_name methods return all of
the PADS value’s children in order and those with a given name in
order, respectively.

For some methods in Figure 13 (Lines 4–5), the concrete data model
simply invokes the corresponding type-specific methods. One ex-
ception is the child axis method (Lines 7–17), which we describe
in detail as it illustrates how the XML view of aPADS source is
materialized lazily. The child method takes an optional name-

1. import schema default element namespace "file:/example/sirius.p";
2. declare variable $pads as document-node(Psource) external;

Figure 11. PADX generated query prolog

class virtual padx_node_rep :
object
(* Private data includes parsed value’s rep & pd *)
method node_name : unit -> string
method typed_value : unit -> item
method parent : unit -> padx_node_rep option
method kth_child : int -> padx_node_rep option
method kth_child_by_name : int -> string -> padx_node_rep option

end

Figure 12. ThePADX node representation

1. class pads_node (nr : padx_node_rep) =
2. object
3. inherit Galax.node
4. method node_name () = nr#node_name()
5. method typed_value () = nr#typed_value()
6. (* ... Other data model accessors ... *)
7. method child name_test =
8. let k = ref 0 in
9. match name_test with

10. | None ->
11. let lazy_child () =
12. (incr k;
13. match nr#kth_child !k with
14. | Some cnr -> Some(new pads_node(cnr))
15. | None -> None)
16. in Cursor.cursor_of_function lazy_child
17. | Some (NameTest name) ->

(* Same as above, but call nr#kth_child_named *)
18. (* ... Other axes ... *)
19. end

Figure 13. Fragment of thePADX concrete data model

test argument. We describe the case when the name-test is absent,
which corresponds to the common expressionchild::*. The
child method creates a mutable counterk (Line 8), which con-
tains the index of the last child accessed, and a continuation func-
tion lazy_child (Lines 11–16), which is invoked each time the
child cursor is poked. On each invocation,lazy_child incre-
ments the counter and delegates to thekth_child method of the
type-specific node representation. For somePADS types, accessing
the virtual kth child does not require reading or parsing data,e.g., if
the virtual child is part of a completePADS record. For otherPADS
types,e.g., Parrays that contain file records, accessing the virtual
kth child may require reading and parsing data. Thekth_child
method provides a uniform interface to all types and delegates the
problem of when to read and parse data to the underlying type-
specific node representation.

To illustrate type-specific compilation, we give the compiler-
generated node representation of anorder_header_t value in
Figure 14. The object takes the name of the field that contains
the order_header_t value, which corresponds to the XML node
name, and the in-memory representation and parse descriptor of the
value. The kth_child method (Lines 9–15) takes an index and re-
turns the node representation of the field at that index. For example,
the first child (Line 11) corresponds to the fieldorder_num, which
contains aPuint32 value. The kth_child_by_name method
(Lines 16–21) provides constant-time lookup of a child witha par-
ticular name: It looks up the index of the name in the associa-
tive map name_map and then delegates tokth_child. Note that
this XML view of an order_header_t value corresponds to the
schema typeorder_header_t in Figure 10.

To summarize, thePADX concrete data model completely imple-
ments the Galax data model, making it possible to evaluate any
XQuery program over aPADS data source. Due to limited space,
we have omitted some details, such as howPADX guarantees that
each virtual node has a unique, immutable identity, as is required
by the Galax abstract data model. The data model’s most important
features are that it provides lazy access to virtual XML nodes in
the PADS source, it delegates navigation to type-specific node rep-
resentations, and it separates navigation of the virtual nodes from
data loading, which is discussed next.

4.3 Loading PADS data

The PADX abstract data model provides Galax with a random-
access view of aPADS data source. In particular, any virtual node
may be accessed in any order at any time during query evaluation
regardless of its physical location in thePADSdata. This abstraction
permits thePADX concrete data model to decide when and how to
read and parse, orload, a data source.

PADX has three strategies for loading data, each of which use the
multiple-entry parsing functions generated by thePADS compiler.
Thebulk strategy loads a completePADS source before query eval-
uation begins, populating all the in-memory representations and
parse descriptors. With all data pre-fetched, bulk loadingis the sim-
plest strategy to implement random access. However, because each
PADS value has a lot of associated meta-data, bulk loading incursa
high memory cost and is only feasible for smaller data sources.

The on-demand, random-accessstrategy loadsPADS data when
Galax accesses virtual nodes via the abstract data model. The strat-
egy maintains a fixed size buffer for loaded values and when the
buffer is filled, expels values in LIFO order. The default units

loaded are anyPADS types annotated withPrecord, which in-
dicates that the type denotes an atomic physical unit in the am-
bient coding. This default works well in practice, because many
PADS sources contain a header, one (or more) very large array(s)
of records, and a trailer. This strategy loads all the data before the
record array(s) and then loads each array item on demand, expelling
old records when the buffer is filled. A small amount of meta-data
is preserved for each expelled record, so that the virtual node con-
taining that data can be reconstructed on subsequent accesses.

The on-demand, sequentialstrategy is a restriction of the on-
demand, random-access strategy. It loads data on demand, but its
fixed-size buffer stores only one record at a time, and it supports
strictly sequential access to records,i.e., accessing records out of
order is prohibited. Given that the Galax abstract data model re-
quires random access, it is not obvious when this strategy can be
used, even though it has the smallest memory footprint of allthree
and therefore could scale to very large sources. It turns outthat
many common XQuery queries can be evaluated inonesequential
scan over the input document, and in these cases, the sequential
strategy is both semantically correct and time and space efficient.
We give examples of “one-scan” queries and their performance in
Section 5.

4.4 Ways to usePADX

Our focus so far has been on describingPADX’s internal architec-
ture to demonstrate the feasibility of viewing and queryingad hoc
data sources as though they were XML. We expect this use ofPADX
to be convenient, because it supports rapid querying of transient
data and does not require an analyst to convert the data into another
format or load it into a database before being able to ask simple
queries. PADX can be used in other ways. For example, an ana-
lyst might prefer to materialize aPADS source in XML and query
her data using a high-performance, commercial XML query engine.
To do this, the analyst simply runs the query “$pads”, which re-
turns the entire source materialized in XML, and then provides the
resulting XML document to the query engine. Another use is to
transform thePADX view of a PADS source into the XML view re-
quired by a database by some down-stream application. Such trans-
formations can be easily expressed in XQuery and can be statically
type checked against thePADX and target XML schemata.

We note, however, that the size of an ad hoc data source is signifi-
cantly smaller than its representation in XML. For our two example
PADS sources, the ratio of the size of the originalPADS data to its
size in XML using the mapping described in Section 4.1 ranges
from 1:7 to 1:8. Of course, this size increase depends on thePADS
types and field names in thePADSdescription, but even a reasonable
choice of names like those in Figure 4 results in a significantsize in-
crease. We mention this size increase to give the reader somesense
of the relative scale of data sources thatPADX can query compared
to those supported by native XML query engines.

5 Performance

Query performance inPADX depends on the efficiency of the under-
lying concrete data model; therefore its performance must be well
understood before we can understand the performance of particu-
lar query plans. We focus on the performance of the concrete data
model and measure the cost of accessing data via thePADS type-
specific parsing functions, thePADX type-specific node representa-
tions, and the genericPADX concrete data model. At the end of this
section, we give preliminary measurements on query performance.

1. class order_header_t_node_rep
2. (field_name : string)
3. (rep : order_header_t)
4. (pd : order_header_t_pd) =
5. object
6. inherit padx_node_rep
7. method name() = field_name
8. ...
9. method kth_child idx =

10. match idx with
11. | 1 -> Some(new val_Puint32_node_rep("order_num", rep.order_num, pd.order_num_pd))
12. | 2 -> Some(new val_Puint32_node_rep("att_order_num", rep.att_order_num, pd.att_order_num_pd))
13. | ...
14. | 14 -> Some(new Pstruct_pd_node_rep("pd", pd))
15. | _ -> None

16. (* Chidren’s name map *)
17. let name_map = Associative_array.create [("order_num", 1); ("att_order_num", 2); ...; ("pd", 14)]
18. method kth_child_by_name child_name =
19. match Associative_array.lookup name_map child_name with
20. | None -> Cursor.empty_cursor()
21. | Some idx -> kth_child idx
22. end

Figure 14. Fragment of compiler-generated node representation for order header t

Data size (MB)
Source 1 5 10 20 50
Sirius 0.25 0.23 0.23 0.22 10.64

Web server 0.70 0.67 0.67 1.18 6.14
Table 1. Bulk strategy: load time per byte inµs

We measured data model and query performance for twoPADS
sources, Sirius and the Web server logs in Figure 1, on data sources
of 1 to 50MB in size. Our measurements were taken on an 1.67GHz
Intel Pentium M with 500MB real memory running Linux Redhat
9.0. Each test was run five times, the high and low times were
dropped, and the mean of the remaining three times is the reported
time.

5.1 Concrete Data Model

We first measured the time to bulk load data sources of 5, 10, 20,
and 50MB by calling thePADS parsing functions,i.e., the lowest
level in thePADX data model. Table 1 gives the load time per byte
in microseconds. For smaller sources, load time is constant, but
eventually increases. For Sirius, the increasing load timeis ob-
served at 50MB and for the Web server data at 20MB. We note that
for a PADS source, the memory overhead of aPADS parsed value
can be four to sixteen times the size of the raw data, depending on
the value’s type. In the cases where non-linear load time occurs, the
processes’ physical memory usage is close to or exceeds realmem-
ory, CPU utilization plummets, and the process begins to thrash.
These measurements indicate that the bulk strategy is only feasible
for smaller data sources.

Next, we measured load time using the on-demand sequential stat-
egy on sources of 5, 10, and 50 MB. We were particularly interested
in the overhead introduced at each level in the concrete datamodel.
Table 2 gives the load time per byte in microseconds (µs) for three
levels: reading the source by calling thePADS parsing functions di-
rectly, a depth-first walk of the virtual XML document by calling
the PADX node-representation functions, and a depth-first walk of
the virtual XML document by calling thePADX generic data model.
Recall that the node-rep functions are in C and the generic data

PADX PADX
Data PADS node generic

Source size read rep DM
5MB 0.07 0.27 0.61

Sirius 10MB 0.06 0.26 0.56
50MB 0.06 0.25 0.56
5MB 0.54 0.78 1.63

Web server 10MB 0.53 0.74 1.61
50MB 0.53 0.74 1.58

Table 2. Sequential strategy: load time per byte inµs

model is in O’Caml.

We observe that the load time per byte at each level is near constant
for increasing source size, but that each level incurs a substantial
cost compared to the lower levels. For the Sirius source, thePADX

node-representation is four times slower than the nativePADS pars-
ing functions, but for the Web-server source, thePADX node rep-
resentation is only 44% slower. Understanding the source ofthis
difference requires further experiments with other sources.

For both sources, the generic concrete data model (in O’Caml)
is twice as slow as the node representation (in C). The interface
from the generic data model to the node representation crosses the
O’Caml-C boundary and uses data marshalling functions gener-
ated by the O’Caml IDL tool. We have noticed similar per-byte
read costs in the Galax secondary storage system [16], whosedata-
model architecture is similar to that ofPADX.

We also measured the time to load using the on-demand, random-
access strategy. In general, it was 10–15% slower than the on-
demand, sequential strategy.

These measurements indicate that the on-demand, sequential strat-
egy scales with increasing data size, and that there is a constant
overhead incurred at each level in the data model. Ideally, we would
like the cost of accessing data via the generic concrete datamodel
to be close to thePADS read cost, but this will require more engi-
neering effort.

Data size (MB) 1 5 10 20 50
Time (seconds) 1.0 4.8 10.7 24.0 90.0
Table 3. PADX query evaluation time in seconds

5.2 Querying

Ultimately, PADX’s query performance depends on Galax, because
the Galax compiler produces and executes the query plans. Cur-
rently, Galax’s query compiler includes a variety of logical opti-
mizations for detecting joins and re-grouping constructs in XQuery
expressions. Another important optimization is detectingwhen a
query can be evaluated in one scan over the input document. Path
expressions that contain only descendant axes and no branches are
one example of the kind of queries that can be evaluated in onescan.
For example, the following query, which returns the locations of all
records containing some error in a Sirius source, can be evaluated
in one scan:

$pads/Psource/orders/elt/pd/loc

Detecting and evaluating one-scan queries (also known as stream-
able queries) is necessary in XML environments in which the XML
data is an infinite or bursty stream. Several query processors al-
ready exist in which streamable queries are evaluated directly over
a stream of tokens produced by SAX-style parsers [9, 14].

Streamable queries are important forPADX, because the resulting
plans can be evaluated on largePADS sources that are loaded on-
demand and sequentially. Table 3 contains the time in seconds to
evaluate the query above when applied toPADS data sources into
which we injected errors randomly in the file (12 errors per 1MB).
The query plan produced by Galax is not perfectly pipelined,thus
the execution time is super linear.

To understand the costs and benefits of other evaluation strategies,
we materialized the 1MBPADS source in Table 3, which yielded a
7.4MB XML document. We then used Galax to execute the above
query, using the same query execution plan, and applied it tothe
7.4MB XML document loaded into the main-memory data model.
The execution time was 13.1s of which 12.9 was spent in document
parsing. To amortize the cost of document parsing time, we often
store documents in Galax’s secondary storage system. To compare
with this strategy, we stored the 7.4MB XML document in Galax’s
secondary storage system, which required 166MB of disk space.
We then ran the above query on the stored document. The execu-
tion time was 2.9s, almost three times slower thanPADX applied to
the PADS data directly. For comparison with an independent query
processor, we evaluated the above query using Saxon [12], a popu-
lar XSLT and XQuery engine, applied to the 7.4MB document and
it executed in 6.3s.

In summary, our initial impressions are that evaluating streamable
XQuery expressions directly on aPADSsource is feasible, efficient,
and convenient.

6 Discussion

ThePADX system solves important data-management tasks: it sup-
ports declarative description of ad hoc data formats, its descriptions
serve as living documentation, and it permits exploration of ad hoc
data and vetting of erroneous data using a standard query language.
The resultingPADS descriptions and queries are robust to changes
that may occur in the data format, making it possible for morethan
one person to profitably use and understand aPADX description and

related queries.

A PADX query corrall is an example of partially compiled query
engine, because its concrete data model is customized for a partic-
ular data format, but its queries are interpreted over an abstract data
model that delegates to the concrete model. This architecture places
PADX on the continuum between query architectures that provide
fully interpreted query plans applied to generic data models to ar-
chitectures that provide fully compiled query plans applied to cus-
tomized data model instances [10]. The latter architectures provide
very high performance on large scale data.PADX has some of the
benefits of such architectures but does not have the overheadof a
complete database system.

Others share our interest in declarative descriptions of adhoc data
formats. Currently, the Global Grid Forum is working on a stan-
dard data-format description language for describing ad hoc data
formats, calledDFDL [3, 4]. Like PADS, DFDL has a rich collection
of base types and supports a variety of ambient codings. Unlike
PADS, DFDL does not support semantic constraints on types nor de-
pendent types,e.g., it is not possible to specify that the length of
an array is determined by some field in the data.DFDL is an anno-
tated subset of XML Schema, which means that the XML view of
the ad hoc data is implicit in aDFDL description.DFDL is still be-
ing specified, so noDFDL-aware parsers or data analyzers exist yet.
We expect that bi-directional translation betweenPADS andDFDL
to be straightforward. Such a translation would make it possible for
DFDL users to usePADX to query their ad hoc data sources.

The steps in a data-management workflow thatPADX addresses typ-
ically precede the steps that require a high-performance database
system,e.g., asking complex OLAP queries applied to long-lived,
archived data. Commercial database products do provide support
for parsing data in external formats so the data can be imported into
their database systems, but they typically support a limited number
of formats,e.g., COBOL copybooks, no declarative description of
the original format is exposed to the user for their own use, and
they have fixed methods for coping with erroneous data. For these
reasons,PADX is complementary to database systems.

We continue to focus on improving the usability and scalability of
PADX. Currently,PADX is not compositional, because the result of
evaluating a query is in native XML, not in aPADS format. Given
an arbitrary XQuery expression over aPADX source, an open prob-
lem is being able to infer a reasonablePADS format for the result
and produce the results in this format. We have already mentioned
the important problem of detecting when a query can be evaluated
in a single scan over an input document and of producing a fully
pipelined execution plan. Interestingly, this problem is important in
XML environments in which the XML data is an infinite or bursty
stream. We are working on improving Galax’s ability to detect
one-scan queries and to produce query plans that are indeed fully
pipelined and that use limited memory.

7 References

[1] Galax user manual.http://www.galaxquery.org.

[2] PADS user manual.http://www.padsproj.org/.

[3] Data format description language (DFDL) a Proposal, Working Draft,
Global Grid Forum. https://forge.gridforum.org/projects/
dfdl-wg/document/DFDL_Proposal/en/%2, Aug 2005. Global
Grid Forum.

[4] M. Beckerle and M. Westhead. GGF DFDL primer.http://www.
ggf.org/Meetings/GGF11/Documents/DFDL_Primer_v2.pdf,

May 2004. Global Grid Forum.

[5] M. Brundage.XQuery: The XML Query Language. Addison-Wesley,
2004.

[6] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck.
Gigascope: High performance network monitoring with an SQLin-
terface. InSIGMOD. ACM, 2002.

[7] M. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur.Imple-
menting XQuery 1.0: The Galax Experience. InProceedings of Inter-
national Conference on Very Large Databases (VLDB), pages 1077–
1080, Berlin, Germany, Sept. 2003.

[8] K. Fisher and R. Gruber. PADS: A domain-specific languagefor pro-
cessing ad hoc data. InProceedings of the ACM SIGPLAN 2005 con-
ference on Programming language design and implementation, June
2005.

[9] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. West-
mann, M. J. Carey, and A. Sundararajan. The BEA streaming XQuery
processor.VLDB J., 13(3):294–315, 2004.

[10] R. Greer. Daytona and the fourth generation language cymbal. In
Proceedings of ACM Conference on Management of Data (SIGMOD),
1999.

[11] T. Grust, M. van Keulen, and J. Teubner. Staircase join:Teach a rela-
tional DBMS to watch its axis steps. InProceedings of International
Conference on Very Large Databases (VLDB), pages 524–535, Berlin,
Germany, Sept. 2003.

[12] M. Kay. SAXON 8.0. SAXONICA.com.
http://www.saxonica.com/.

[13] C. Ré, J. Siméon, and M. Fernández. A complete and efficient al-
gebraic compiler for XQuery. InProceedings of IEEE International
Conference on Data Engineering (ICDE), April 2006.

[14] K. Rose and L. Villard. Phantom XML. InXML Conference and
Exhibition, 2005.

[15] J. Siméon and M. F. Fernández. Build your own XQuery
processor. EDBT Summer School, Tutorial on Galax ar-
chitecture, Sept 2004. http://www.galaxquery.org/slides/
edbt-summer-school2004.pdf.

[16] A. Vyas, M. F. Fernández, and J. Siméon. The simplest XML storage
manager ever. InXIME-P 2004, pages 37–42, Paris, France, June
2004.

[17] W3C. XQuery 1.0 and XPath 2.0 data model, Oct. 2005.http:
//www.w3.org/TR/query-datamodel/.

[18] Extensible markup language (XML) 1.0. W3C Recommendation, Feb.
2004.http://www.w3.org/TR/2004/REC-xml-20040204/.

[19] XPath 2.0. W3C Working Draft, Oct. 2005.http://www.w3.org/
TR/xpath20.

[20] XQuery 1.0: An XML query language. W3C Working Draft, Oct.
2005.http://www.w3.org/TR/xquery/.

[21] XML schema part 1: Structures. W3C Recommendation, Oct. 2004.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

