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Abstract

An ad hoc data sources any semistructured data source for which
useful data analysis and transformation tools are not Iseadail-

able. Such data must be queried, transformed and displayed b

systems administrators, computational biologists, firdanalysts

and hosts of others on a regular basis. In this paper, we demon

strate that it is possible to generate a suite of useful dateegs-
ing tools, including a semi-structured query engine, seviar-
mat converters, a statistical analyzer and data visualizabu-
tines directly from the ad hoc data itself, without any hunian
tervention. The key technical contribution of the work is altn
phase algorithm that automatically infers the structurarofd hoc
data source and produces a format specification irrftzes data
description language. Programmers wishing to implemesitocoi
data analysis tools can use such descriptions to generiatngr
and parsing libraries for the data. Alternatively, our s@afite infras-
tructure will push these descriptions through #reds compiler,
creating format-dependent modules that, when linked vaitmét-
independent algorithms for analysis and transformatiesult in
fully functional tools. We evaluate the performance of aderence
algorithm, showing it scales linearly in the size of therinag data
— completing in seconds, as opposed to the hours or dayseis tak
to write a description by hand. We also evaluate the coresstiof
the algorithm, demonstrating that generating accurateriggi®ns
often requires less than 5% of the available data.

Categories and Subject Descriptors D.3.m [Programming lan-
guage§ Miscellaneous

General Terms Languages, Algorithms

Keywords Data description languages, grammar induction, tool
generation, ad hoc data

1. Introduction

An ad hoc data sourcés any semistructured data source for which
useful data analysis and transformation tools are not Ixeadail-
able. XML, HTML and CSV arenot ad hoc data sources as there
are numerous programming libraries, query languages, a&nu
and other resources dedicated to helping analysts matepddeaa
in these formats. However, despite the prevalence of stdrfde
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mats, massive quantities of legacy ad hoc data persist dsfiahg-
ing from computational biology to finance to physics to netimng
to health care and systems administration. Moreover, eegiand
scientists are continuously producing new ad hoc formatsespite
the presence of existing standards— because it is ofterdexge
to do so. Over time, these expedient formats become difftoult
work with because of missing documentation, a lack of tomfs]
corruption caused by repeated redesign, reuse and extensio

The goal of therADS project (Fisher and Gruber 2005; Fisher
et al. 2006; Mandelbaum et al. 2007; PADS Project) is to imgro
the productivity of data analysts who need to cope with ned an
evolving ad hoc data sources on a daily basis. Our centriahtdc
ogy is a domain-specific language in which programmers ceo-sp
ify the structure and expected properties of ad hoc datacesur
whether they be ASCII, binary, Cobol or a mixture of formats.
These specifications, which resemble extended type déolasa
from conventional programming languages, are compiled ant
suite of programming libraries, such as parsers and psingrich
are then linked to generic data processing tools includmxML-
translator, a query engine (Fernandez et al. 2006), a sistplis-
tical analysis tool, and others. Hence, an important beoéfits-
ing PADS is that a single declarative description may be used to
generate many useful end-to-end data processing toolsletatyp
automatically.

On the other hand, a significant impediment to usmg@s is
the time and expertise needed to writesd s description for a new
ad hoc data source. For data experts possessing clear, iginaund
documentation about a simple data source, writirg@s descrip-
tion may take anywhere from a few minutes to a few hours. How-
ever, it is relatively common to encounter ad hoc data seutttat
contain valuable information, yet have little or no docunagion.
Understanding the structure of the data and creating geers
for such sources can take days or weeks depending upon the com
plexity and volume of the data in question. In one specificrga,
Fisher spent approximately three weeks (off and on) attegpod
understand and describe an important data source used aI.AT&
One of the difficulties was that the data source suddenlyched
formats after approximately 1.5 million entries. Of couyréeeal-
ing with the vagaries of ad hoc data is time-consuming anar-err
prone for experts, it is even worse for novice users.

To improve the productivity of experts and to make theds
toolkit accessible to new users with little time to learn gpec-
ification language, we have developed an automatic fornfat-in
ence engine. This format inference engine reads arbitr&¢IA
data sources and produces an accurate, human-readabietitasc
of the source. These machine-produced descriptions gjwerexa
running start in any data analysis task as the libraries rgée
from these descriptions may be incorporated directly im@ali-
nary C program. The inference engine is also directly cotekio
the rest of theeADs infrastructure, making it possible for first-time



users, with no knowledge of theabs domain-specific language,

to translate data into a form suitable for loading into atretwl
database, to load it into an Excel spreadsheet, to converddta
into XML, to query it in XQuery, to detect errors in additional data
from the same source, and to draw graphs of various data compo
nents, all with just a “push of a button.”

In designing a format inference engine foxDs, we are in ter-
ritory explored in the past by the machine learning comnyufior
example, there have been many attempts to devise algorttrahs
learn regular expressions, context free grammars and nxote e
language classes. These algorithms have been used tapéafks
ranging from natural language understanding to type infegdor
XML documents to information extraction from web pages. One
key difference in our work is that we target an understudismain
(ad hoc systems data) that allows new techniques for efteatr
ference. A second key difference is that we solve a new pnoble
showing how to generate an entire suite of end-to-end datzeps-
ing tools with no human intervention. Section 6 contains aemo
in-depth analysis of related work. To summarize, this papekes
three main contributions:

¢ We have developed a multi-phase algorithm that infers the fo
mat of complex, ad hoc data sources, producing compact and
accuratePADS descriptions.

e We have incorporated the inference algorithm into a modular
software system that uses sample data to generate a toolkit
of useful data processing tools, without requiring any hama
intervention.

¢ We have evaluated the correctness and performance of cur sys
tem on a range of ASCII data sources. For many data sources,
training on 5% or less of the data results in accuracy rates
greater than 95% (often perfect). In all our benchmarksijrthe
ference algorithm scales linearly with the quantity of data

For readers interested in seeing our system operate ligeg i

an online demo illustrating its many featurdst { p: / / wwaw.
padspr oj . or g). The remainder of this paper describes the sub-
set of thepaDSs description language we attempt to infer (Sec-
tion 2), the inference algorithm itself and generated tq&sc-
tion 3), the performance (Section 4), strengths and weaksesf

our approach (Section 5), related work (Section 6) and ceimhs
(Section 7). This paper is an extended version of a 2-page sum
mary presented at the CAGI 2007 workshop on grammar induc-
tion (Burke et al. 2007).

2. The Internal Format Description Language

Our format inference algorithm comprises a series of phtsss
generate and transform an internal format descriptiondagg we
refer to simply as the IR. The IR is very similar to theaps
language we developed and formalized in previous work @fish
etal. 2006). Apart from syntax, the main differences arettalR
omits recursion and function declarations; the former ¢pbieyond
the scope of our current inference techniques and the lagieg
unnecessary during the course of the inference algorithm.

2.1 The Language

Like all languages in theabpsfamily, the IR is a collection of type
definitions. These “types” define both the external syntadaif
formatted on disk and the shape of the internal representathat
result from parsing. We rely upon both of these aspects of typ
definitions to generate stand-alone tools automaticailyurieé 1
summarizes the syntax of the IR and of the generated internal
representations.

The building blocks of any IR data description are the base
typesb, which may be parameterized by some number of argu-

c = ali|s (constants)
T (variables)
P = ¢z (parameters)
Base type$ ::=
Pi nt (generic, unrefined integer)
Pi nt Ranged (integer with min/max values)
Pi nt 32 (32-bit integer)
Pi nt 64 (64-bit integer)
| Pi nt Const (constant integer)
| Pfl oat (floating point number)
Pal pha (alpha-numeric string)
Pstring (string; terminating character)
Pst ri ngFwW (string; fixed width)
PstringConst  (constant string)
Pot her (punctuation character)
Conpl exB (complex base type defined by regexp;
e.g.date, timegtc)
| Pvoi d (parses no characters; fails immediately)
| Penpty (parses no characters; succeeds immediately)
TypesT ::=
b(p1,.--Pk) (parameterized base type)
| :b(p1,...DK) (parameterized base type;
underlying value named x)
| struct {T1;...Tx:} (fixed sequence of items)
|array {T;} (array with unbounded repetitions)

| arrayFW{T:}[p]
| arrayST {T’;}[sep,term]
| uni on {Ty; ... Tx:}

| enum{cy; ...cx:}

| x:enum{ca; ... ck:}

(array; fixed length)

(array; separator and terminator)
(alternatives)
(enumeration of constants)
(enumeration of constants;

underlying value named x)
| option{T;} (type T or nothing)
| swi tch z of

{c1=>Ti;...cx, =>Ty;} (dependent choice)
Representations of parsed ddta=

c (constant)
(injection into theit" alternative of a union)
(sequence of data items)

| in;(d)

| (d1,....dk)

Figure 1. Selected elements of the IR.

mentsp. Arguments may either be constantsvhich include char-
actersa, integersi and stringss, or variablesz bound earlier in
the description. These base types include a wide rangefefetit
sorts of integers and strings. In its initial phases, therigrice al-
gorithm uses general integBr nt , alphanumeric strinfal pha
and punctuation charactd®ot her (a) types. In later phases,
these coarse-grained base types are analyzed, mergedfiaed,re
producing integers with rangdd nt Ranged( mi n, max), in-
tegers with known sizé? nt 32 or Pi nt 64, constant integers
(Pi nt Const () for some integet), or floating-point numbers
Pf | oat . Likewise, later stages of our algorithm transform al-
phanumeric strings into arbitrary strings with termingticharac-
ters Pstring(a) wherea terminates the string), fixed width
strings Pstri ngFW i) where: is the length of the string) or
string constant®st r i ngConst ( s) . For brevity in our descrip-
tions, we normally just write the constant striagnline in a de-
scription instead oPst ri ngConst ( s) .

In addition to these simple base types, the IR includes a col-
lection of higher-level base types commonly found in ad haad
specified generally in Figure 1 &onpl exB. For example, we
have implemented base types for IP addresses, email adgress
URLs, XML tags, dates, times and a variety of others. Finalig
typesPvoi d andPenpt y are two special base types that are in-
troduced at various points in the inference process. Theféils
immediately; the second succeeds immediately. Neitheswoes
any characters while parsing.



Crashreporter.log:

Sat Jun 24 06:38:46 2006 crashdunp[2164]: Started witing crash report to: /Logs/Crash/Exit/ pro.crash.|og
- crashreporterd[120]: mach_nsg() reply failed: (ipc/send) invalid destination port

Sirius AT&T Phone Provisioning Data:

8152272| 8152272| 1| 6505551212| 6505551212 0] 0] | no_i i 152272 EKRS_6| 0] FREDL| DUQ 10| 1000295291
8152261| 8152261| 1| 0] 0| 0] O] | no_i i 752261| EKRS_1| 0] kf eosf 2| DUQ EKRS_6| 1001390400| EKRS_OS_10| 1001476801

Figure 2. Example ad hoc data sources.

Complex descriptions are built from simpler ones using a va- dumpReport =
riety of type constructors. Type constructors include dasiuct uni on {
typesst ruct {71; ... Tx;}, which indicate a data source should St.r.gf;ried witing crash report to:
contain a sequence of items matchifig ..., 75, basic array types file: Ppat h; 9 P '
array T, which indicate a data source should contain a sequence }:
of items of arbitrary length, each matchifig and union types L
uni on {T1; ... Tx;}, which indicate a data source should match };

one of T1, ..., Tx. Initial phases of the inference algorithm re-

strict themselves to one of these three sorts of type caetsi reporterReport =
Later phases of the algorithm refine, merge and process sirase struct { ) _ )
ple types in a variety of ways. For example, unions may bestran ;“.”ft' on: Fpgt P; . repl\yy failed: ");
formed into enumerations of constastsum{c;; ...cx; } or options }: ailurensg: Pstring (*\n");
opti on {7’;}. In addition, later phases bind variables to the re- ’
sults of parsing base types and enums. For examép1,...,px) dat eCption =
expresses the fact that variahtés bound to the value parsed by uni on {
base typeb(pi,...px). These variables express dependencies be- h.
tween different parts of a descriptidrzor example, the length of struct {
a stringPst ri ngFWp) or an arrayPar r ay FWp) may depend day: PDate;, " ";
upon either a constant or a variable and likewise for anyrqthe time:  PTime, " *;
rameterized base type. In addition, unions may be refineddet . year:  Pint32 ;
pendent switch statemengsvi t ch z of {c1 => T1; ... ¢ => }: '
Tx;}, where the data is described By, ..., orT; depending on the '
value associated with, be itcy, ..., orcg. source =

In addition to describing a parser, eaeADS types may be arrayST {
interpreted as a data structure. We let metavaridblange over struct {
such data structures. For the purposes of this paperay be a date:  dateOption;
constante, an injection into thei*” variant of a unioni n,(d), kind:  enum{"crashdump®; =
or a sequence of data iteré,, . . ., d). The injections are used dumpi d: Pi nt 32 C[f‘?h[?po”erd DA O
as the representations of any sort of union type, be it a y@on reggrt: ' '
enumeration, an option or a switch. The sequences are ugkd as switch kind of {
representations of any sort of sequence type, whether itsheiet "crashdunp” => dunpReport
or one of the array variants. Our earlier work (Fisher et @06) "crashreporterd" => reporterReport
contains a precise treatment of this secondary semantics. };

\n", ECF];

2.2 Running Examples

Figure 2 presents tiny fragments of two different ad hoc data Figure 3. Hand-written IR Crashreporter.log description.
files on which we have trained our inference algorithm. Thet fir
Crashreporter.log, is a Mac system file that records inftiona
concerning process crastfeFhe second, which we call Sirius,
is an internal AT&T format used to record phone call prouisio
ing information. We use the Crashreporter.log data sousceua
main example throughout the paper; periodically we refethto
Sirius data source to illustrate particular aspects of tifierénce
algorithm.

Figure 3 presents a hand-written description of the Crashre
porter.log file in the IR syntax. This description is mostiyazad
from the bottom, starting with the definition of tls®ur ce type.
This definition specifies that the data source is an arrayrottst

separated by newline characters and terminated by the efilé of
marker. In other words, the data source is a sequence of \iiths
the struct in question appearing on each line. The struelf iits-
dicates each line is a sequencedaft eopt i on, ki nd, dunpi d
andr eport fields. The description also specifies that the delimiter
"[" appears between ttké nd anddunpi d fields, and the delim-
iter"]: " appears between tlinpi d andr eport fields.

Most of the variable names associated with fielelg.(dat e,
dunpi d, etc) merely serve as documentation for the reader. How-
ever, theki nd field is different — it is used later in the description
and hence illustratesdependencyTo be specific, the form of the

1We assume every bound variable is distinct from every oterappears r epor.t "field dependsn upon the contents (?f taend field. If its
in a description. Roughly speaking, the scope of such Vasaxtends as value is" cr ashdunp”, then ther eport is a dunpReport

far as possible to the right through the description. type, while if the ki nd field is "crashreporterd”, the
2For expository purposes we have made a minor alteratioret€thshre- report isareporterReport type. )

porter.log format to allow us to explain more concepts witkiragle exam- Figure 3 contains thrge other definitions aside freaur ce.
ple. The evaluation section reports results on both the &elp unmodi- These definitions specify the structure of tdenpReport,

fied Crashreporter.log and the modified version. reporterReport anddat eOpt i on types.
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Figure 4. Architecture of the automatic tool-generation engine

2.3 Connections with Regular Expressions

From a parsing perspective, the subsetmbsthat we consider in
this paper is connected to regular expressions: strucs fgeghly
correspond to concatenation, array types to Kleene stauaiath

able to infer data descriptions. Our tool currently suppohunking
on a line-by-line basis as well as on a file-by-file basis.

We use a lexer to break each chunk into a serisfgple tokens
which are intuitively atomic pieces of data such as numlsates,
times, alpha-strings, or punctuation symbols. Every sinipken
has a corresponding base type in the IR, though the conenss i
true — there are base types that are not used as tokens. iNdesst,
since simple tokens have a very close correspondence wit ba
types, we often use the wotdkeninterchangeably withase type

Parenthetical syntax, including quotation marks, curlgces,
square brackets, parentheses aml tags, often provides very
important hints about the structure of an ad hoc data filer&he
fore, whenever the lexer encounters such parenthesegaiesra
meta-tokenwhich is a compound token that represents the pair of
parentheses and all the tokens withiRor example, in Crashre-
porter.log, the syntak2164] will yield the meta-toker *] in-
stead of the sequence of three simple toenBi nt , and] . The
structure-discovery algorithm eliminates all meta-takdaring its
analysis; whenever it encounters a context consisting o€z
meta-tokens, it cracks open the meta-tokens so it can anéhgz
underlying structure.

Our learning system has a default tokenization scheme skewe
toward systems data, but users may specify a different seliem
their own domain through a configuration file. For examplen<o
putational biologists may want to add DNA strinG8TTGITT. . .
to the default tokenization scheme. The configuration fikesien-
tially a list of name, regular expressions pairs. The sysieas the
configuration file to generate part of the system'’s lexer, lleco

types to unions. Some dependencies may also be translated tdion of new IR base types, and a series of type definitionsateat

regular expressions. For example, the t§pe

struct {x: enum{c_1,;
T_O;
switch x of {c_1 => T_1;

c_2;};
c_2=>T2;};}

may be translated to a regular expressiva: (c1-To-11 )+ (c2-To-
T>). However,pPADS programmers tend to prefétover R sinceT’
clearly identifies the tag that determines the branch of tireruand

it avoids repeating) (which becomes increasingly problematic as
the number of alternatives grows). We describe existingaaaihes

to learning regular expressions in Section 6.

3. The Inference Algorithm

Figure 4 gives an overview of our automatic tool generation a
chitecture. The process begins with raw data, shown in bue (
grey) at the top left, which we pipe into the format inferemre
gine (circumscribed by dotted lines in the picture). Thigiae pro-
duces a syntactically correenbs description for the data through
a series of phases: chunking and tokenization, structgcodery,
information-theoretic scoring, and structure refinemdiite sys-
tem then feeds the generateabs description into theeADS com-
piler. The compiler generates libraries, which the systeem tinks

to generic programs for various tasks including a data aisatgol
(a.k.a.,theaccumulatoy and an ad-hoc-teML translator. At this
point, users can apply these generated tools to their atigaw
data or to other data with the same format. The following eabs
tions describe the main components of the inference algorih
more detail. We illustrate the effect of each phase on ouningn
examples and present the output of some of the generatex tool

3.1 Chunking and Tokenization

The learning system first divides the input data, which werred
as thetraining set into chunksas specified by the user. Intuitively,
a chunk is a unit of repetition in the data source. It is prifpdoy
analyzing sequences of such chunks for commonalities taatrey

incorporated into the finaADS specification.

3.2 Structure Discovery

Given a collection of tokenized chunks, the goal of the stnee
discovery phase is to quickly find a candidate descriptidasg’

to a good final solution. The rewriting phase then analyzfses
and transforms this candidate to produce the final desoripfihe
high-level form of our structure-discovery algorithm waspired
by the work of Arasu and Garcia-Molina (2003) on information
extraction from web pages; however, the context, goals &g a
rithmic details of our work are quite different.

Structure Discovery Basics. Our algorithm operates by analyz-
ing the collection of tokenized chunks and guessing whatdpe
level type constructor should be. Based on this guess, titipas
the chunks and recursively analyzes each partition to materthe
best description for that partition. Figure 5 outlines therall pro-
cedure in Pseudo-ML. Ther acl e function, whose implementa-
tion we hide for now, does most of the hard work by conjuring on
of four different sorts of prophecies.

The BasePr ophecy simply reports that the top-level type
constructor is a particular base type.

TheSt r uct Pr ophecy specifies that the top-level description
is a struct withk fields. It also specifies a list, call dss, with &
elements. The'™ element incss is the list of chunks correspond-
ing to thei*® field of the struct. The oracle derives these chunk
lists from its original input. More specifically, if the of@cguesses
there will bek fields, then each original chunk is partitioned ito
pieces. The'® piece of each original chunk is used to recursively
infer the type of the®® field of the struct.

TheAr r ayPr ophecy specifies that the top-level structure in-
volves an array. However, predicting exactly where an aoemins
and ends is difficult, even for the magical oracle. Consetlyehe
algorithm actually generates a three-field struct, whezditkt field

3|f parenthetical elements are not well-nested, the méter® are dis-
carded and replaced with ordinary sequences of simple soken



allows for slop prior to the array, the middle field is the gritaelf,
and the last field allows for slop after the array. If the slom$ out
to be unnecessary, the rewriting rules will clean up the riretize
next phase.

Finally, theUni onPr ophecy specifies that the top-level struc-
ture is a union type witlt branches. Like &t r uct Pr ophecy,
the Uni onPr ophecy carries a chunks list, with one element for
each branch of the union. The algorithm uses each elemestto r
cursively infer a description for the corresponding braoné€lihe
union. Intuitively, the oracle produces the union chungsdiy “hor-
izontally” partitioning the input chunks, whereas it paois struct
chunks “vertically” along field boundaries.

As an example, recall the Crashreporter.log data from Eigur
Assuming a chunk is a line of data, the two chunks in the exampl
consist of the token sequences (redalll] and (*) are meta-
tokens):

Pdat e

Ptime ’ Pi nt
Pal pha [*] ':" '~

Pal pha [ *]
Pal pha (*) '’

Given these token sequences, the oracle will predict tleatap-
level type constructor is a struct with three fields: one ffiertokens
before the toker{ ], one for the[ *] tokens themselves, and
one for the tokens after the tokér] . We explain how the oracle
makes this prediction in the next section. The oracle theides
the original chunks into three sets as follows.

Pdate °’ Ptime ’ Pi nt Pal pha (set 1)
- '’ Pal pha
[*] (set 2)
[*]

A (set 3)
' ' palpha (*) '

On recursive analysis of set 1, the oracle again suggestad &t
the top-level type, generating two more sets of chunks:

Pdate °’ Ptime ’ Pi nt (set 4)
Pal pha (set 5)
Pal pha

type description (* an IR description x)
type chunk (* a tokenized chunk x)
type chunks chunk 1ist

(* A top-level description guess *)
dat at ype prophecy =

BasePr ophecy of description
| StructProphecy of chunks |ist
| ArrayProphecy of chunks * chunks * chunks
| Uni onProphecy of chunks |ist

(*» Cuesses the best top-level description x)
fun oracle : chunks -> prophecy

(* Inplements a generic inference algorithm x)
fun di scover (cs:chunks) description
case (oracle cs) of
BaseProphecy b => b

| StructProphecy css =>
let Ts = map discover css in
struct { Ts }

| ArrayProphecy (csfirst, csbody, cslast) =>

let Tfirst = discover csfirst in
| et Thody = discover csbhody in
let Tlast = discover cslast in

struct { Tfirst; array { Tbody }; Tlast; }
| Uni onProphecy css =>
let Ts = map discover css in

union { Ts }

Figure 5. A generic structure-discovery algorithm in Pseudo-ML.

to cope with “fence-post” problems in which the first or thetla
entry in an array may have slightly different structure.Histcase,
the preamble chunks all have the fofRi nt ' |’ } while the
postamble chunks all have the forffPi nt }, so the algorithm
easily determines their types. The algorithm discoversype of
the array elements by analyzing the residual list of chunks

Pint ']’

Pint |’
Pint |’

Now, since every chunk in set 5 contains exactly one base type. ..

token, the recursion bottoms out with the oracle claimingas
found the base typ®al pha. When analyzing set 4, the ora-
cle detects insufficient commonality between chunks andbddsc
the top-most type constructor is a union. It partitions sentd
two more sets, with each group containing only 1 chunk (eithe
{Pdate * ' ...} or {"-" ' ' }). The algorithm analyzes
the first set to determine the type of the first branch of themni

and the second set to determine the second branch of the. union

With no variation in either branch, the algorithm quicklsdbvers
an accurate type for each.

Having completely discovered the type of the data in set 1, we
turn our attention to set 2. To analyze this set, the algorithacks
open the[ *] meta-tokens to recursively analyze the underlying
data, a process which yieldd ruct {'['; Pint; "]";}.
Analysis of Set 3 proceeds in a similar fashion.

As a second example, consider the Sirius data from Figure 2.
Here the chunks have the following structure:

Pint '’ Pint "|" ... |’ Pi nt

Pint '|" Pint "|’ e e
The oracle prophecies that the top-level structure inwarearray
and partitions the data into sets of chunks for the arrayrpbés,
the array itself, and the array postamble. It does this tpzning

Pint ']’

Pal pha Pi nt Pi nt

Pal pha Pint |

The oracle constructs this chunk list by removing the prdamb
and postamble tokens from all input chunks, concatenatieg t
remaining tokens, and then splitting the resulting list iome chunk
per array element. It does this splitting by assuming thatctiunk
for each array element ends with f’ token.

So far so good, but how does the guessing work? Why does the
algorithm decide the Sirius data is basically an array bais@re-
porter.log is a struct? After all, the Sirius chunks all haw nt ,
just as all the Crashreporter.log chunks have a bracket-tokés
[ *] . Likewise, Crashreporter.log contains many occurrentteeo
'’ ' token, which might serve as an array separator as ftheto-
ken does in the Sirius data.

The Magic. To generate the required prophecy for a given list
of chunks, the oracle computes a histogram of the frequerafie
all tokens appearing in the input. More specifically, thedgsam
for tokent plots the number of chunks (on theaxis) having a
certain number of occurrences of the token (omtfeis). Figure 6
presents a number of histograms computed during analysrseof
Crashreporter.log and Sirius chunk lists.

Intuitively, tokens associated with histograms with higiver-
age meaning the token appears in almost every chunk panew



distribution, meaning the variation in the number of timeasken
appears in different chunks is low, are good candidatesefinitig
structs. Similarly, histograms with high coverage avide distri-
bution are good candidates for defining arrays. Finallytolgiems
with low coverage or intermediate width represent tokeasfilrm
part of a union.

Concretely, consider histogram (a) from Figure 6. It is a per
fect struct candidate— it has a single column that cover86160
the records. Indeed, this histogram corresponds tptfetoken in
Crashreporter.log. Whenever the oracle detects suchaghésh, it
will always prophecy a struct and partition the input chuaksord-
ing to the associated token. All of the other top-level hasamns for
Crashreporter.log contain variation and hence are lessicéndi-
cators of data source structure.

As a second example, consider the top-level histogramébif),
and (g) for token#al pha, Pi nt andPwhi t e, respectively, and
compare them with the corresponding histograms (h), (i) @nd

ative entropy of two normalized histograms and h2, written
R(h1 || he), is defined as follows.

width(hy)

Rl [[h2) = D halj] * log(fulj]/h2lj])

Jj=1

To create a symmetric form, we first find the average of the ti&o h
tograms in question (writteh; @ h2) by summing corresponding
columns and dividing by two. This technigue prevents theoden
inator from being zero in the final relative entropy compiotat
Using this definition, the symmetric relative entropy is:

- 1 - I
S(hi || h2) = §R(h1 [| h1 @ he) + 5R<h2 | h1 @ h2)

Now that we have defined the relevant properties of histogram
we can explain how the oracle prophecies given a list of chunk

computed for the same tokens from chunk set 1, defined in the 1. Prophecy a base type when each chunk contains the same sim-

previous subsection. The histograms for chunk set 1 haviesar
variation than the corresponding top-level histogramsgalricular,
notice that histogram (h) for tokdPal pha is a perfect struct his-
togram whereas histogram (f) for tok®al pha contains a great
deal of variation. This example illustrates the source eftbwer of
our divide-and-conquer algorithm- if the oracle can idgnéven
one tokerat a given level as defining a good partition for the data,
the histograms for the next level down become substanshbyper
and more amenable to analysis.

As a third example, consider histogram (k). This histogram
illustrates the classic pattern for tokens involved in gsrait has
a very long tail. And indeed, thie token in the Sirius data does act
like a separator for fields of an array.

ple token. If each chunk contains the same meta-token, then
prophecy a struct with three fields: one for the left parere on
for the body, and one for the right paren.

2. Otherwise, compute normalized histograms for the inpgt a
group related ones into clusters using agglomerative erust
ing: A histogramh; belongs to group’ provided there ex-
ists another histogrankz in G such thatS(h: || h2) <
ClusterTolerance. whereClusterTolerance is a parameter of
the algorithm. We do not require all histograms in a cluster t
have precisely the same histogram to allow for errors in éta.d
A histogram dissimilar to all others will form its own groujve
have found &lusterTolerance of 0.01 is effective.

To make the intuitions discussed above precise, we mustedefin 3. Determine if a struct exists by first ranking the groups iy t

a number of properties of histograms. First, a histografior a
tokent is a list of pairs of natural numbefs;, y) wherez denotes
the token frequency angldenotes the number of chunks with that
frequency. All first elements of pairs in the list must be weig
The width of a histogram \idth(%)) is the number of elements in
the list excluding the zero-colummé. excluding element0, v)).
A histogramh is in our normal form when the first element of the
list is the zero column and all subsequent elements aredsirte
descending order by thg component. For example, if; is the
histogram[(0, 5), (1, 10), (2, 25), (3, 15)] thenwidth(h,) is 3 and
its normal formh is [(0, 5), (2, 25), (3, 15), (1, 10)].

We often refer tq; as themassof the elementz, y), and given
a histogramh, we refer to the mass of thd" element of the list
using the notatiork[¢]. For instanceh,[3] = 15 andh;[3] = 10.
Theresidual masgrm) of a columni in a normalized histograrh
is the mass of all the columns to the rightigdlus the mass of the

zero-column. Mathematicallym(h, i) = h[0] + 341" h[j].
For exampleym(hi,1) = 5 4 15 4 10 = 30. The residual mass
characterizes the “narrowness” of a histogram. Those griatos
with low residual mass of the first columne, rm(h1, 1) is small)
are good candidates for structs because the corresporakagst
occur exactly the same number of times in almost all records.
To distinguish between structs, arrays and unions, we a&esd n
to define thecoverageof a histogram, which intuitively is the
number of chunks containing the corresponding token. Mattie
ically, it is simply the sum of the non-zero histogram eletsen

coveragéh) = Y- "™ ).

Finally, our algorithm works better when the oracle conside
groups of tokens with similar distributions together bessawith
very high probability such tokens form part of the same type-c
structor. To determine when two histograms amailar, we use

a symmetric form ofelative entropy(Lin 1991). The (plain) rel-

minimum residual mass of all the histograms in each group.
Find the first group in this ordering with histogramsatisfying
the following criteria:

e rm(h) < MaxMass
e coverage(h) > MinCoverage

where constantdfaxMass and MinCoverage are parameters

of the algorithm. This process favors groups of histograritis w
high coverage and narrow distribution. If histograims. . ., k.,
from groupG satisfy the struct criteria, the oracle will prophecy
some form of struct. It uses the histogrars ..., h, and

the associated tokens, ..., t, to calculate the number of
fields and the corresponding chunk lists. We ¢all... ., t,, the
identifiedtokens for the input. Intuitively, for each input chunk,
the oracle puts all tokens up to but not including the firsetok

t from the set of identified tokens into the chunk list for the
first field. It putst in the chunk list for the second field. It puts
all tokens up to the next identified token into the chunk list f
the third field and so on. Of course, the identified tokens need
not appear in the same order in all input chunks, nor in factmu
they all appear at all. To handle this variation when it os¢thre
oracle prophecies a union instead of a struct, with one lbranc
per token ordering and one branch for all input chunks that do
not have the full set of identified tokens.

4. |dentify an array by sorting all groups in descending oiue
coverage of the highest coverage histogram in the groupl Fin
the first group in this ordering with any histograms thatsfsti
the following minimum criteria:

o width(h) > 3
e coverage(h) > MinCoverage

This process favors histograms with wide distribution aighh
coverage. If histogramé,, ..., h, with corresponding tokens
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Figure 6. Histograms (a), (b), (c), (d), (e), (f) and (g) are generdterh top-level analysis of Crashreporter.log tokens. Toveasponding
tokens are (a) ], (b) Pi nt, (c) PDat e, (d) PTi ne, (e)-, (f) Pal pha and (g)Pwhi t e. Histograms (h)Pal pha, (i) Pi nt, and (j)
Pwhi t e are generated from analysis of Crashreporter.log from ggtelsecond level of recursion). Histogram (k) is generétesh top-
level analysis of th¢ token from the Sirius data. Note that several of these hiatag have many bars of very small height, including (f)

with 7, (g) with 8, and (k) with 17.

t1, ..., t, satisfy the array criteria, the oracle will prophecy
an array. It will partition each input chunk into (1) a predenb
subsequence that contains the first occurrence of eachi-ident

fied token, (2) a set of element subsequences, with each-subse

guence containing one occurrence of the identified tokerts, a
(3) a postamble subsequence that contains any remainieggok
from the input chunk.

5. If no other prophecy applies, identify a union. Partitioa input
chunks according to the first token in each chunk.

3.3

We use an information theoretic scoring function to asshkss t
quality of our inferred descriptions and to decide whetbeaiply
rewriting rules to refine candidate descriptions. Inteityy a good
description is one that is botbompactand precise There are
trivial descriptions of any data source that are highly cantie.g,
the description that says the data source is a string tetesina
by end of file) or perfectly precisee(g, the data itself abstracts
nothing and therefore serves as its own description). A goodng
function balances these opposing goals. As is common inimach
learning, we have defined a scoring function based oiMihenum
Description Length PrinciplgMDL), which states that a good
description is one that minimizes the cost (in bits) of traitsng
the data (Griinwald 2007). Mathematically7lis a description and
di,...,dy are representations of thechunks in our training set,
parsed according t@, then the total cost in bits is:

COST(T7 dy,.. .,dk) = CT(T) + CD(dl7 ey dy | T)

where CTT') is the number of bits to transmit the description and
CD(d1,...,d | T) is the number of bits to transmit the dafi@en
the description

Intuitively, the cost in bits of transmitting a descriptida
the cost of transmitting the sort of descriptione( struct,
uni on, enum etc) plus the cost of transmitting all of its sub-
components. For example, the cost of transmitting a stiyym t
CT(struct{Ty;...;Tk;}) is CARD + ¥  CT(T;) where
CARD is the log of the number of different sorts of type construc-
tors (24 of them in the IR presented in this paper). We haveeefi
the recursive cost function mathematically in full, butepéimita-
tions preclude giving that definition here.

The cost of encoding data relative to selected types is sliown
Figure 7. The top of the figure defines the cost of encodingadd d
chunks relative to the typE; it is simply the sum of encoding each
individual chunk relative t@".

In the middle of the figure, we define the cost of encoding a
chunk relative to one of the integer base types; other bgsesty
are handled similarly. Notice that the cost of encoding a®-in
ger relative to the constant tyf nt Const is zero because the
type itself contains all information necessary to recamtthe
integer— no data need be transmitted. The cost of encoditeg da

Information-Theoretic Scoring

Cost of encoding all training data relative to a type:
CD(d1,...,d | T) Sk cD'(d; | T)
Cost of encoding a single chunk relative to selected bassstyp

CD’ (i | PintConst(p)) = 0

CD’(i | Pint32) = 32
CD’(i | Pint64) = 64
CD’(i I PintRanged(pmi'mpmaw)) = o0

Cost of encoding a single chunk relative to selected types:

CD'((d1,...,dg) | struct{Ty;...Tk; })

=311 CD'(di | T)
CD’(in;(d) | union{T1;...Tk;})
= log(k) + CD’'(d | T3)
CD’(ini(c) | enum{cy; ... cx; })
= log(k)

CD’(in;(d) | switch @ of{c1=>T1;...cp=>Tk; })
—CD'(d|T))

Figure 7. Cost of transmitting data relative to a type, selected rules

relative toPi nt 32 or Pi nt 64 types is simply 32 or 64 bits,
respectively. Finally, we artificially set the cost of radggpes
Pi nt Ranged(pmin, Pmaez) to be infinity because our experi-
ments reveal that attempting to define integer types withrmim
and maximum values usually leads to overfitting of the data.

The last section of Figure 7 presents the cost of encoding
data relative to selected type constructors. The cost abding
astruct is the sum of the costs of encoding its component parts.
The cost of encoding ani on is the cost of encoding the branch
number (og(k) if the union hask branches) plus the cost of en-
coding the branch itself. The cost of encodingearumis the cost
of encoding its tag only — given the tag, the underlying datde-
termined by the type. The cost of encoding t ch is the cost
of encoding the branch only — the tag need not be encoded $&cau
it is determined by the type and earlier data.

3.4 Structure Refinement

The goal of the structure-refinement phase is to improvetthe-s
ture produced by the structure-discovery phase. We foreiee
structure-refinement problem as a generalized searchghrthe
description space starting with the candidate producedrbytsre
discovery. The objective of the search is to find the desonghat
minimizes the information-theoretic scoring function.

4We nevertheless retaPi nt Ranged types in our IR to encode the range
of values found during the value-space analysis. Duringeiwiting phase,
we use this range information to rewrii nt Ranged into other integer
types. Since the cost of encodiRgnt Ranged is so high, the appropriate
rewriting is guaranteed to be applied. In the future, we nmaijt ¢his range
information as comments in the generated descriptions.



Rewriting rules. To move around in the description space, we
define a number of rewriting rules, the general form of whch i

T = T', if some constraint p(7) is satisfied,

whereT is a type in the candidate description ahd is its re-
placement after the rewriting. Some rules are unconditianal
thus free of constraints. There are two kinds of rewritingsu(1)
data-independent rules which transform a type based exelysn
the syntax of the description; and (2) data-dependent mikesh
transform a type based both on the syntax of the description a
on properties of the training data parsed by tfpdn general, the
data-independent rules try to rearrange and merge portibtise
description while the data dependent rules seek to idenbfy
stant fields and enumerations, and to establish data depeede
between different parts of the description.

Figure 8 presents a selection of the rewriting rules useten t
refinement phase. We have omitted many rules and have sieaplifi
others for succinctness. Whér[X] appears in a pattern on the
left-hand side of a rewriting ruleX is bound to the set of data
representations resulting from usitiggo parse the appropriate part
of each chunk from the training set. Furthermore cletd(X) be
the cardinality of the seX, and letX () be the data representation
resulting from parsing the'" chunk in the training set. Finally,
given a union valuen;(v), we definelag(in;(v)) to bej.

(* rewiting rules *)
type rule : description -> description
val rules : rule list

(* measure the score for a type *)
fun score : description -> float

(» find the type with best score froma list x)
fun best: description list -> description

(* inprove the given type by one rewiting rule *)
fun oneStep (T:description) description =

let all = map (fnrule =>rule T) rules in

let top = best all in

if (score top) < (score T) then oneStep top

else T

(* main function to refine an IR description *)
fun refine (T:description) description =
let T = case T of
base b => b
| struct { Ts } => struct { map refine Ts }
| union { Ts } => union { map refine Ts }

| switch x of { vTs } =>
switch x of
{ mp (fn (v, t) => (v, refinet)) vTs }
| array { T} =>
array { refine T}

| option { T} => option{ refine T} in
oneStep T

Figure 9. Generic local optimization algorithm in Pseudo-ML

The Search. The core of the rewriting system is a recursive,
depth-first, greedy search procedure. By “depth-first,” weam
the algorithm considers the children of each structured hgfore
considering the structure itself. When refining a type, igerithm
selects the rule that wouldinimizethe information-theoretic score
of the resulting type and applies this rule. This processatpuntil
no further reduction in the score is possible, at which paiatsay
the resulting typd’ is stable

The rewriting phase applies the algorithm given in Figure 9
three times in succession. The first time, the algorithmidyisim-
plifies the initial candidate description usingly data-independent

rules. The second time, it uses the data-dependent rulesfite r
base types to constant values and enumeratinsand to intro-
duce dependencies such as switched unions. This stagee®qui
the value-space analysis described next. The third tineealkpo-
rithm re-applies the data-independent rules because sagetsvo
rewritings (such as converting a base type to a constanijena-
ther data-independent rewritings.

Value-space analysis. We perform a value-space analysis prior
to applying the data-dependent rules. This analysis finséigdes

a set of relational tables from the input data. Each row inbéeta
corresponds to an input chunk and each column corresponds to
either a particular base type from the inferred descriptamto

a piece of meta-data from the description. Examples of mdata-
include the tag number from union branches and the length of
arrays. We generatesgtof relational tables as opposed to a single
table as the elements of each array occupy their own sepatdee

(a description with no arrays will have only one associatduxi).

We analyze every column of every table to determine proper-
ties of the data in that column such as constancy and valgeran
To find inter-column properties, we have implemented a dimpl
fied variant of the TANE algorithm (Huhtala et al. 1999), whic
identifies functional dependencies between columns irtioelal
data. Because full TANE is too expensive (possibly expdakint
the number of columns), and produces many false positiveaiwh
invoked with insufficient data, our simplified algorithm cputes
only binary dependencies. We use the result of this depegden
analysis to identify switched unions and fixed-size arrays.

Running example. To illustrate the refinement process, we walk
through a few of the steps taken to rewrite the Crashreplager
description. The first part of the candidate descriptioregated by
the structure-discovery algorithm appears below.

struct {
uni on {
struct {
Pdate; Pwhite; Ptinme; Pwhite; Pint;
Pwhi t e; (*)
b
struct {
Pwhi t e; (*)
b
}
Pal pha; "“["; Pint; "]";
union { ... };
H

In the first data-independent stage of rewriting, the comtrailting
white space marke(l*) is pulled out of the union branches into
the surrounding struct using the “common postfix in uniorféru
This transformation leaves behind the single-elementstnarked
(**) in the result below; rewriting rules in stage three will san
form this verbose form into the more compact constant strin.
This first rewriting stage also pulls colon and whitespaceatters
out of the trailing union (not shown in the candidate degiop.

struct {

uni on {
struct { Pdate; Pwhite; Ptime; Pwhite; Pint; };
struct { "-" }; (**)

}

Pwhi t e; (*)

Pal pha; "“["; Pint; "]1"; ":"; Pwhite;

union { ... };

In the second rewriting stage, data-dependent rules 1 and 2
convert appropriate base types into constants and enunteoiver,



Data independent rules
1. Singleton structs and unions
struct{T} =T union{T} =T

struct{} = Pempty
2. Struct and union clean-up
struct{pre_types; Pvoid; post_types} = Pvoid

union{} = Pvoid

struct{pre_types; Pempty; post_types} =
struct{pre_types; post_types}

union{pre_types; Pvoid; post_types} =
union{pre_types; post_types}
3. Uniform struct to fixed-length array
struct{T};...;Tn} = arrayFW{T} }[n]
if n>3andVvi € [1, n], j € [1, n]: T; =Tj.
4. Common postfix in union branches
union{struct{pre_typesi;T};
struct{pre_typesz; T}} =
struct{union{struct{pre_typesi};
struct{pre_typesa}}; T}

union{struct{pre_types; T};T} =
struct{option{struct{pre_types}}; T}
5. Combine adjacent constant strings
struct{pre_types; PstringConst(c1);
PstringConst(c2); post_types} =
struct{pre_types; PstringConst(c1 Qcy); post_types}

Data dependent rules

3. Union to switch

1. Base type with unique values to constant
Pint[X] = PintConst(c)
fVvre X: z=c.

Palpha[X] = PstringConst(c)
fVee X: z=c

Pstring[X] = PstringConst(c)
fVee X: z=c

Pother[X] = PstringConst(c)
fvxeX:z=c

2. Refine enums and ranges
Pstring[X] = enum{si;..
if Vvee X: z € {s1,...

38k}
s Sk}

Pint[X] = Pint32
ifVre X:0<z <232,

struct{pre_types; enum{ci;. . .; cn }[X]; mid_types;
union{Ty;...; Tn}[Y]; post_types}

=

struct{pre_types, z : enum{c1;...;cn}; mid_types;
switch(z){c1 = Tr(1); - - -3 cn = Tii(n) }; Posttypes}

where z is a fresh variable, and there exists a permutafibns.t.

Vi € [1, card(X)], II(tag(X (7)) = tag(Y (¢)).

Figure 8. Selected and simplified rewriting rules

TANE discovers a data dependency between the newly intemtiuc
enumeration involving' cr ashdunp" and " nmach_nsg", and
the structure of the following message. Hence, we introdaice

The information-theoretic complexity of the final desciapt
relative to the data in our training set is 304538 bits. Thedca
date description produced by the structure-discovery ehasl a

switched union. Notice that the switched union branches on a complexity of 416156 bits. The absolute values of these tifies

different enum than the hand-written IR in Figure 3 becalnge t
inference algorithm found a different way of structuring thata.
Nonetheless, both of these descriptions are accurate.

struct {
uni on {
struct { Pdate; Ptime; 2006; 1};
struct { "-" };
i
" "; enum {"crashreporterd", "crashdump"};
“["; PintRanged [120...29874]; "]1"; ":"; " ";
x19: enum {"crashdunp", "mach_nsg", "Finished",
"Started", "Unable", "Failed"};
switch x19 of { ... };

In the third and final stage, data independent rule 5 combines

constants and rule 1 flattens the singleton struct, reguitirthe
final IR description:

struct {
uni on {
struct { Pdate; " "; Ptinme; " "; 2006; };
H
" ": enum{"crashreporterd", "crashdunp"};
“["; Pint32; "]: ";
x19: enum {"crashdunp", "mach_nsg", "Fini shed",
"Started", "Unable", "Failed"};
switch x19 of { ... };

b

are relatively unimportant, but the fact that the final coewil is
substantially smaller than the original suggests that earch pro-
cedure optimized the description effectively.

3.5 End Products

The previous subsections outline the central technicahetes
of our algorithms. The main tasks remaining include corngrt
the internal representation into a syntactically correebs de-
scription, feeding the generated description to khes compiler
and producing a collection of scripts that conveniently keae
the freshly-generated libraries with thaDs run-time system and
tools. At the end of this process, users have a number of amogr
ming libraries and many powerful tools at their disposakh@ps
the most powerful tools are theabx query engine (Fernandez
et al. 2006) and th&mL converter, which allow users to write ar-
bitrary XQueries over the data source or to convert the detat
for use by other software. Other useful tools include theiamda-
tor tool mentioned earlier, converters to translate dai@ anform
suitable for loading into a relational database or Excedagisheet,
and a custom graphing tool that pushes datagmop| ot for data
visualization. Figure 10 gives snapshots of the output cdupte
of these tools.

4. Experimental Evaluation

We conducted a series of experiments to study the correctrabs
performance of our format inference algorithm. Table 1sligte
data sources we used in the experiments; they range fromnsyst
logs to application outputs to government statistics. Bxéer sir-
ius.1000, which is a proprietary format, the files are allilatde
fromwww. padspr oj . or g/ | ear ni ng. ht m . The size of the



Tiny fragment of XML output from crashreporter.log:

<Struct_114>

<var_7>
<var _6>

<var _O><val >Sat Jun 24</val ></var _0>
<var _2><val >06: 38: 46</ val ></var _2>
<var _4><val >2006</ val ></ var _4>

</var_6>
</var_7>

<var _l1><val >crashdunp</val ></var_11>

<var _l4><val >2164</val ></var _14>

Graph generated from ai.3000 web transaction volume ardiit

times of the day (00:00-8:55 and 19:00-24:00):
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Figure 10. End products of automatically generated tools.

Data source

[| KB/Chunks | Description |

1967Transactions.short 70/999 transaction records
MER_T01.01.cvs 22/491 comma-sep recordg
ai.3000 293/3000 | webserver log
asl.log 279/1500 | log file of Mac ASL
boot.log 16/262 Mac OS boot log
crashreporter.log 50/441 original crash log
crashreporter.log.mod 49/441 modified crash log
sirius.1000 142/999 | AT&T phone
provision data
Is-I.txt 2/35 Stdout from Unix
command Is -I
netstat-an 14/202 output from netstat
pagelog 28/354 printer logs
quarterlypersonalincomg 10/62 spread sheet
railroad.txt 6/67 US rail road info
scrollkeeper.log 66/671 application log
windowserverast.log 52/680 log from
LoginWindow
server on Mac
yum.txt 18/328 log from pkg install

Table 1. Benchmark profile including filename, size in KB, num-

ber of chunks and brief description.

[ Data source | SD(s) | Ref(s) | Tot(s) | HW(h) |
1967Transactions.short|[ 0.20 | 2.32 2.56 4.0
MER_T01.01.csv 0.11 | 280 | 2.92 0.5
ai.3000 1.97 | 26.35 | 28.64 1.0
asl.log 2.90 | 52.07 | 55.26 1.0
boot.log 0.11 | 240 | 253 1.0
crashreport.log 0.12 3.58 3.73 20
crashreport.log.mod 0.15 3.83 4.00 2.0
sirius.1000 224 | 569 | 8.00 15
Is-I.txt 0.01 | 0.10 | 0.11 1.0
netstat-an 0.07 0.74 0.82 1.0
pagelog 0.08 0.55 0.65 0.5
quarterlypersonalincomg 0.07 5.11 5.18 48
railroad.txt 0.06 | 2.69 2.76 2.0
scrollkeeper.log 0.13 3.24 | 3.40 1.0
windowserverlast.log 0.37 9.65 | 10.07 15
yum.txt 0.11 | 191 | 2.03 5.0

Table 2. Execution times. SD: time for structure-discovery phase;
Ref: time for scoring and refinement; Tot: end-to-end time fo
complete inference algorithm; HW: time takenhoursto hand-
write the corresponding description.

benchmarks varies from a few thousand lines to just a fewrdoze
Most of the data files are “line based,” meaning that every tia-
comes a chunk for the purposes of learning the format. One ex-
ception is netstat-an, in which chunks comprise multipiedi We
include two versions of crashreporter.log: the originala&hre-
porter.log” and the slightly modified “crashreporter.iogd” that

we used as an example in this paper. We include both to demon-
strate that our minor modifications were simply for expasitour-
poses.

Performance. Our first set of experiments measures the time re-
quired to infer a description from example data. In all oypexx
ments, we used an Apple PowerBook G4 with a 1.67 GHz Proces-
sor and 512 MB DDR RAM running on Mac OSX 10.4 Tiger. Ta-
ble 2 presents the execution times for the structure-desggehase
(SD), the refinement phase (Ref) and the total (Tot) endhtbtiene

of the algorithm including printingePADS descriptions and other
overhead, all measured in seconds. For accurate timingureas
ments, we ran the algorithm 10 times, and found the average af
removing the best and the worst times.

There are two main lessons to take away from this initial et o
benchmarks. First, the overall time to infer the structurany our
example files was less than a minute, and was less than 10dsecon
except on a couple of the larger files. Hence, although we have
spent very little time optimizing our algorithm, it alreadppears
perfectly capable of being used in real time by a programmer
wishing to understand and process small ad hoc data fileen8gec
discovery of an initial format is usually very fast, takirgsé than
3 seconds in all cases. Most of the algorithm’s time is spent i
format rewriting, which often takes a factor of 10 or moredithan
structure discovery. Moreover, most of the rewriting timaadken
in the data analysis phase (numbers not shown). Conseguiéntl
format rewriting (particularly the data analysis phase}aking
too long, the user may abort it to produce a slightly less egfin
description that may nevertheless be perfectly sufficient.

To give a very rough idea of how using the inference system
compares with programming descriptions by hand, we also mea
sured the time it took for a person to write descriptions bbtthe
data sources (See Table 2 again). Initially, our progran{enBih.D.
in computer science) knew very little about how #veDs system
worked in practice, having only read a few of our conferenae p
pers. Consequently, writing the first description took agldime,
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Figure 11. Execution times of training sets

approximately 48 hours (two days of working at an “ordinary”
pace) for quarterlypersonalincome. While different peapith dif-
ferent backgrounds will clearly learn at different rategre is little
doubt that the format inference algorithm is a tremendousfigo
novices, particularly to those data analysts without a PimbBom-
puter science, who are uninterested in learning some neavdgat
scription language. After some practice, our programmes aide
to write most descriptions in 1 to 2 hours, so generating rifesc
tions in a few seconds still has great benefit, even to experts

To understand the scaling behavior of our algorithm, we ran-
domly selected 5%, 10%, 15%, ..., 80% of the chunks in evety da
source and measured the performance of the algorithm orseeh
set of the data that was selected. Figure 11 plots the eredithe
against the percentage of each data source selected. Timse e
iments suggest that once a format is fixed, the cost of inéeren
grows linearly with the amount of data. However, it is alseatl
that the raw size of the data is not the only factor deterngimier-
formance. The nature and complexity of the format is alsguaifi
icant factor. For instance, windowseryest.log is only one third
the size of sirius.1000, but takes substantially longetherinfer-
ence algorithm to process.

Correctness.  To evaluate the correctness of our algorithm, we
again selected random subsets of each data source, traineigjo-
rithm on those subsets and measured the error rate of theeidfe
parser on the remaining data. Figure 12 graphs the peraenfag
successfully parsed records versus the percentage of theisked
in training. Note that accuracy does not uniformly improvéis
variation is caused by the randomness in our data seleatibthe
fact that in some cases, we have very small absolute quentfi
data relative to the underlying complexity of the formater -
stance, at 5% training size, Is-l.txt is just one line of data

To understand the correctness properties of our algoritbm f
a different angle, we record the minimum training sizes ircpst-
ages required to achieve 90% and 95% accuracy for all thenbenc
marks in Table 3. This table also reports the normalized abat
description (NCT), which we compute by dividing the first quon
nent of the information-theoretic score in Section 3.3 ®rthmber
of bits in the data. NCT gives a rough indication of the comije
of the data source. The higher the normalized score, the coone
plicated the data, and the greater the fraction of data idete&
learn an accurate description. The rows of of Table 3 aredaont
ascending NS score. From the table, one can see that Issheit
railroad.txt have high NS scores. This is because they aite qu
small data sources (2KB and 6KB respectively), yet haveivels
complicated formats. Consequently, it takes a substaptieion
of the data to learn an accurate parser. For most of the otter d

Figure 12. Success rates of training sets

[ Data source [ NCT [ 90% [ 95% |
sirius.1000 0.0001| 5 10
1967Transactions.short|| 0.0003| 5 5
ai.3000 0.0004| 5 10
asl.log 0.0012| 5 10
scrollkeeper.log 0.0020| 5 5
pagelog 0.0032| 5 5
MER_T01.01.csv 0.0037| 5 5
crashreporter.log 0.0052| 10 15
crashreporter.log.mod || 0.0053| 5 15
windowserverlast.log 0.0084| 5 15
netstat-an 0.0118| 25 35
yum.txt 0.0124| 30 45
quarterlypersonalincom¢g 0.0170| 10 10
boot.log 0.0213| 45 60
Is-Ltxt 0.0461| 50 65
railroad.txt 0.0485| 60 75

Table 3. Correctness measures. NCT: normalized cost of descrip-
tion; Min Training size (%) to obtain required accuracy

sources, a substantially smaller percentage of the daggusred to
achieve high accuracy. Overall, for 11 of 16 benchmarks, tlesn
15% of the data is needed to achieve 95% accuracy or more.

5. Discussion

Dealing with errors.  In 1967, Gold (1967) proved that learning a
grammar for any remotely sophisticated class of languagelsid-
ing regular languages, is impossible if one is only givenitpas
example datd.Given this negative theoretical result, and the prac-
tical fact that it is hard to be sure that training data is sidfitly
rich to witness all possible variation in the data, errorsference
are inevitable. Fortunately, detecting and recoveringifesrors in
ad hoc data is one of the primary strengths offthes system.

To determine exactly how accurate an inferred descripSami
any new data source, a user may run the accumulator tooltddlis
catalogs exactly how many deviations from the descriptrere

5A positive example is a data source known to be in the grammébet
learned. A negative example is one knowot to be in the target gram-
mar. Perfect learning with both positive and negative eXxamis possible.
Unfortunately, data analysts are unlikely to have accessstafficient col-
lection of relevant ad hoc data that they kndees notsatisfy the format
they are interested in learning, we are forced to tackle tbeendifficult
problem of learning from positive examples only.



were overall in the data source as well as the error rate inyeve
individual field. Hence, using this tool, a programmer camigali-
ately and reliably determine the effectiveness of infeegfioc their
data. If there is a serious problem, the user can easily legligéen-
erated description by hand — identification of a problem field
minor edit and recompilation of tools might just take 5 masit
Hence, even imperfectly-generated descriptions havé ga@ize in
terms of improving programmer productivity. Moreover, DS
generated parsers and tools have error detection, repatiserand
recovery techniques. For instance, when converting dasavto,
errors encountered are represented explicitly irxthe document,
allowing users to query the data for errors if they choosdoige
graphing ad hoc data, an analyst may use the accumulatototool
check if any errors occur in the fields to be graphed. If natetis
no reason to edit the description at all — graphing the cofields
may proceed immediately.

Futurework. Discovering tokens like “IP address” and “date” is
highly beneficial as such tokens act as compact, highly geser,
human-readable abstractions. Unfortunately, these to&em also
often mutually ambiguous. For instance, an IP address, trftpa

Traditional Grammar Induction. Classic grammar induction al-
gorithms (Vidal 1994) can be divided into two classes: thise
require both positive and negative examples to discoveramgr
mar and those that only require positive examples. The pnobl
our system solves is the latter; negative examples of ad htzx d
sources are not available in practice. Consequently, teféetheo-
retical algorithms for learning from both positive and niagaex-
amples such as RPNI (Oncina and Garcia 1992) are not apigicab
in our context.

Unfortunately, an early result by Gold (1967) showed that pe
fect grammar induction is impossible for any superfinitesslaf
languages when the algorithm has no access to negative Bsamp
A superfiniteclass of languages is any set of languages that in-
cludes all finite languages and at least one infinite langudgece,
all the most familiar classes of languages, including regekpres-
sions, context free grammars and PADS are superfinite. Tdrere
two main tactics one can use to avoid this negative resyltuga
domain knowledge to explicitly limit the class of languadesa
non-superfinite class, or (2) give up on perfect languagstifile
cation and instead settle fapproximate identificatiorfWharton
1974) through the use of probabilistic language models.

point number and a phone number can all be represented as some Examples of non-trivial, non-superfinite language clasgids

number of digits separated by periods. At the moment, wemisa

known inference algorithms include k-reversible langusag®n-

biguate between them in the same way that lex does, by taking gluin 1982), SOREs and CHARES (Bex et al. 2006). None of these

the first, longest match. In select cases, when we cannamnedisa
biguate in the tokenization phase, we try to correct problesing
domain-specific rewriting rules in the structure refinemgmase.
To improve tokenization in the future, we plan to look at feag
probabilistic models of a broad range of token types. We &iso
tend to explore finding new tokens from the data itself, gogdy
identifying abrupt changes in entropy (Hutchens and Al@98).

6. Related Work

Researchers have been studygngmmar inductionthe process of
inferring descriptions of text-based data, for decadeseNkeless,
the work we present in this paper represents an importamewel
contribution to the field for three key reasons:

1. Our system solves new end-to-end problenot treated in past
work — the problem of generating an extensible suite of fully
functional data processing tools directly from ad hoc datn-
erating this suite requires the combination of three elamen
grammar induction, automatic intermediate represemtagen-
eration and type-directed programming. A key contributidén
this work is the conception, development and evaluatiomisf t
end-to-end system.

. Past work on grammar induction has focused primarily en ei
ther (1) theoretical problems, (2) natural language prsings
(3) web page analysis, or (4) XML typing. Our work tackles an
understudied domain, that of complex system logs and other a
hoc data sources. Since ad hoc data has different chasticteri
from the previously studied domains, naive adaptationef t
existing algorithms are unlikely to be effective.

. From a technical standpoint, we developed a new top-down
structure-discovery algorithm and showed how to combiaé th
productively with a classic bottom-up rewriting system éxhs
on the minimum description length principle. We demonstrat
that our new algorithm has good practical properties on ad ho
data sources: it usually infers correct descriptions on allsm
amount of training data and its performance scales linearly
relative to the amount of training data used.

In the rest of this section, we analyze the most closelyedlatork
in more depth.

languages and the associated algorithms are a good fit far inf
ring PADS descriptions (even the regular subset of PADS -with
out dependencies and constraints). For example, ad hoésdata
likely to be reversible and hence k-reversible languagesat rel-
evant. SOREs are a subset of the k-testable regular langwatie

a linear-size translation from automata to regular exjpoass but
they carry the restriction that each symbol in the regularession
appear at most once. A cursory glance at our hand-writtenSPAD
descriptions reveals that many such descriptions inclegeated
use of the same symbol. Finally, it appears that CHARESsicestr
the nesting of regular expression operators too severebetof
much use to us. For example, wherb, andc are atomic symbols,
even the simple expressi@ab + c)« is not a CHARE.

Given the difficulty of finding useful non-superfinite langea
classes, it is reasonable to turn to algorithms for appraténmfer-
ence that use probabilistic models. Classic examples df pum-
cedures include work by Stolcke and Omohundro (1994) andjHon
(2002). These and a number of other algorithms operate l@atep
edly rewriting a candidate grammar (or set of candidate grars)
until an objective function is optimized. If the trainingtddor the
learning system is the strings, s2, .. ., s», these algorithms nor-
mally start their process using the grammar+ ss + - - + sp.
Consequently, an enormous number of different rewrites apay
ply to the initial candidate grammar. Our structure refinetphase
avoids these problems because it is preceded by a highly effi-
cient histogram-based structure-discovery algorithmittentifies
a good candidate grammar from which to start the search.

Another category of algorithms are those that learn various
kinds of automata as opposed to regular expressions or gram-
mars (Denis et al. 2004; Oncina and Garcia 1992; Raeymaekers
et al. 2005). One difficulty with adapting these algorithrosour
task is that we would need to convert the inferred automata in
a grammatical representation so that we can present thi tesu
users and funnel it to our tool-generation infrastructlwefortu-
nately, in theory, conversion from automata into regulgresgsions
can resultin an exponential blowup in the size of the repragion.
Moreover, a substantial blowup appears to be relativelyraomin
practice (Bex et al. 2006). Consequently, these algorithrasnot
appropriate for our domain.

Information Extraction. The basic goal of an information extrac-
tion system is to find and separate the interesting and e dits



of information (the needles) from a haystack of data. Sushesys
are fundamentally different from ours, in that they choogectv
bits of information to extract, while we learn a descriptiointhe
entirety of a data source, leaving the choice about whicbgsiare
interesting to down-stream applications. Of course, tipsoo is
only feasible because we target ad hoc data, which is fainics
tured and dense in useful information, rather than web paigese
text, which are the usual targets for information extratdgstems.

A common approach to information extraction involves an in-
ductive learning process in which a user manually tags tlesant
data in sample documents. An example might be highlightingp
uct names and prices on a collection of shopping web pagesdro
particular site. The learning system then uses these &bdthcu-
ments in two ways: first, to decide which bits of informatidvoald
be extracted from the pageé€d, product names and prices), and
second, to constructvarapperfunction to extract those bits of in-
formation from similar pages. Soderland’s WHISK system9@)9
is an example of such an extraction system. It is particulgein-
eral as it makes few assumptions about the form of the soexrte t
operating over structured data, stylized text such as Griaist de-
scriptions, or free-form text. WHISK differs from our systén that
it requires user labeling and then only extracts a colleabituples
from the data source rather than returning the completetsieiof
the data source.

Kushmerick and colleagues (1997; 1997) focus on more struc-
tured data to reduce the amount of labeling required durizig-t
ing. In particular, this work assumes the labelled pagesoconto
one of six different templates, the most well-developed bfch
has the form of a header, followed by a sequence of K-tuplels ea
of which is flanked by a pair of begin and end tags, followed by a
trailer. For such documents, the system generates a wrappgf
tract the K-tuples. The use of fixed templates and the prirftanys
on relational data makes this work quite different from ours

Muslea et al. (2003) tackle a similar problem, but strivedo r
duce the amount of labeling by having the learning systenseho
which documents to have the user label, selecting docunients
their probative value. Borkar et al. (2001) uses hand-lafetain-
ing examples and a user-specified set of desired featureaito t
Hidden Markov Models to select the desired features fromi-sim
lar documents. This work is quite successful at learningetect
the relevant features of addresses and bibliographidaitafrom
a variety of input formats. In general, systems that depgch la-
beling are unlikely to be helpful in our context; rather tispending
time explicitly labeling documents, the user might as weiteva
PADS description by hand.

More closely related are various efforts to identify tabulata
either from free-form text (Ng et al. 1999; Pinto et al. 2008jrom
web pages (Lerman et al. 2004). These approaches typicsdly u
hand-labelled examples to train machine learning systeriden-
tify the tables. They then use heuristics specific to tabdi¢aa to
extract the tuples contained within those tables. The @ouf this
work related to identifying structured data from within redree-
form documents is complementary to ours. The portion resipta
for deconstructing the identified tables uses more speaficaih-
knowledge related to the form of tables than we do.

Web pages generated in response to queries tend to be forme
by sloting the resulting tuples into a standard templateotAar
line of work aims to separate such templates from the payload
data (Arasu and Garcia-Molina 2003; Crescenzi et al. 2080Bsu
and Garcia-Molina use a top-down grammar induction alborit
somewhat similar to our rough structure-inference phdsrih it
does not use histograms), but has no description-rewrgngine.
This algorithm exploits the hierarchical nesting struetof XmL
documents in essential ways and so cannot be applied ditectl
ad hoc data.

XML Type Inference. Many researchers have studied the prob-
lem of learning a schema such as a DTD or XSchema from a col-
lection of XML documents (Bex et al. 2006, 2007; Fernau 2001;
Garofalakis et al. 2000). At a high level, this task is simtlathe
format inference component of our system. However, theildeta
differ because XML has different characteristics from ad data.
One difference is that XML documents come in a well-nested tr
shape, with obvious delimiters defining the structure. Aosedm-
portant difference is that the appropriate tokenizatiorafgiven ad
hoc data source is often not known in advance. In contrastnto

in XML documents are clearly demarcated using angle brasket
tax. As a result of these differences, XML inference aldwnis
cannot be used “off-the-shelf” for understanding the $tmecof ad
hoc data. They must be modified, tuned and empirically etedla
on this new task.

One line of research on schema inference for XML makes use
of the observation that 99% of the content models for XML rsode
are defined as SOREs or CHARESs (Martens et al. 2006). This ob-
servation allows Bex et al. (2006) to define an efficient atgor
for inferring concise DTDs. Later Bex et al. (2007) build dmist
work by showing how to infek-local XML Schema definitions
also based on SORES. /Alocal definition allows node content to
depend on the parent tag, grandparent tag, etc. (&pléwels for
some fixedk). As mentioned earlier, hand-written PADS descrip-
tions do not generally obey the SOREs or CHARES restriction,
are they generally arranged with a nesting structure thygesisc-
local inference will be particularly useful. The successioplica-
tion of these techniques to XML data reinforces the ideattieaad
hoc data we analyze has quite different characteristica o/IL,
and therefore the ad hoc data inference problem merits staey
pendent of the XML inference problem.

XTRACT (Garofalakis et al. 2000) is another system for infer
ring DTDs for XML documents. It operates in three phases:-gen
eralization, factoring and MDL optimization. The first pegdays
a role similar to our structure discovery phase in that itegates a
collection of candidate structures from a series of XML eghas.
This generalization phase searches for patterns in XML, dtais
tuned using the authors’ knowledge of common DTD structures
Factoring decreases the size of generated candidate DoiDs; af
the factoring rules resemble our rewriting rules. Findhgy tackle
the MDL optimization problem by mapping the problem intoan i
stance of the NP-complete Facility Location Problem, whtody
solve using a quadratic approximation algorithm. Our MDlielgd
rewriting problem considers a more general set of rewritirigs
and hence we cannot reuse their technique.

Other work. Potter's Wheel (Raman and Hellerstein 2001) is
a system that attempts to help users find and purge errors from
relational data sources. It does so through the use of adprea
sheet style interface, but in the background, a grammarente
algorithm infers the structure of the input data, which may‘ad
hoc,” somewhat like ours. This inference algorithm operdig
enumerating all possible sequences of base types thatrappka
draining data. Since Potter's Wheel is aimed at processilagional
data, they only infest r uct types as opposed to enumerations,
arrays, switches or unions.

The TSIMMIS project (Chawathe et al. 1994) aims to allow
users to manage and query collections of heterogeneouspad h
data sources. TSIMMIS sits on top of the Rufus system (Shoens
etal. 1993), which supports automatic classification chdatrces
based on features such as the presence of certain keywaads; m
numbers appearing at the beginning of files and file type. Jdnis
of classification is materially different from the syntactinalysis
we have developed.



7. Conclusions

Managing ad hoc data is a tedious, error-prone and costir-ent
prise. By augmenting theabps data processing language and sys-
tem with an efficient format inference engine, we have eiffebt

cut the generation time for useful data analysis and tramsftion
tools from hours or days to seconds. Now, within moments of re
ceiving a new ad hoc data source, programmers can write eampl
semi-structured queries to extract information, prodaéermative
graphs of key statistics, convert the data into a format ainlen
to easy loading into Excel or translatexeiL for processing with
other standard programming libraries and systems. Systdm-
istrators, computational scientists, financial analysthystrial data
management teams and everyday programmers will all benéfit s
stantially from this new capability to translate dirt intsefiul shov-
els for ad hoc data processing.
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